skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cho, Hyuna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brain development in adolescence is synthetically influenced by various factors such as age, education, and socioeconomic conditions. To identify an independent effect from a variable of interest (e.g., socioeconomic conditions), statistical models such as General Linear Model (GLM) are typically adopted to account for covariates (e.g., age and gender). However, statistical models may be vulnerable with insufficient sample size and outliers, and multiple tests for a whole brain analysis lead to inevitable false-positives without sufficient sensitivity. Hence, it is necessary to develop a unified framework for multiple tests that robustly fits the observation and increases sensitivity. We therefore propose a unified flexible neural network that optimizes on the contribution from the main variable of interest as introduced in original GLM, which leads to improved statistical outcomes. The results on group analysis with fractional anisotropy (FA) from Diffusion Tensor Images from Adolescent Brain Cognitive Development (ABCD) study demonstrate that the proposed method provides much more selective and meaningful detection of ROIs related to socioeconomic status over conventional methods. 
    more » « less
  2. Given a population longitudinal neuroimaging measurements defined on a brain network, exploiting temporal dependencies within the sequence of data and corresponding latent variables defined on the graph (i.e., network encoding relationships between regions of interest (ROI)) can highly benefit characterizing the brain. Here, it is important to distinguish time-variant (e.g., longitudinal measures) and time-invariant (e.g., gender) components to analyze them individually. For this, we propose an innovative and ground-breaking Disentangled Sequential Graph Autoencoder which leverages the Sequential Variational Autoencoder (SVAE), graph convolution and semi-supervising framework together to learn a latent space composed of time-variant and time-invariant latent variables to characterize disentangled representation of the measurements over the entire ROIs. Incorporating target information in the decoder with a supervised loss let us achieve more effective representation learning towards improved classification. We validate our proposed method on the longitudinal cortical thickness data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our method outperforms baselines with traditional techniques demonstrating benefits for effective longitudinal data representation for predicting labels and longitudinal data generation. 
    more » « less