skip to main content

Search for: All records

Creators/Authors contains: "Choi, Chang Jae"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI ( B. prasinos ) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters. 
    more » « less
  2. Johnson, Karyn N. (Ed.)
    ABSTRACT Coral reefs are possible sinks for microbes; however, the removal mechanisms at play are not well understood. Here, we characterize pelagic microbial groups at the CARMABI reef (Curaçao) and examine microbial consumption by three coral species: Madracis mirabilis , Porites astreoides , and Stephanocoenia intersepta . Flow cytometry analyses of water samples collected from a depth of 10 m identified 6 microbial groups: Prochlorococcus , three groups of Synechococcus , photosynthetic eukaryotes, and heterotrophic bacteria. Minimum growth rates (μ) for Prochlorococcus , all Synechococcus groups, and photosynthetic eukaryotes were 0.55, 0.29, and 0.45 μ day −1 , respectively, and suggest relatively high rates of productivity despite low nutrient conditions on the reef. During a series of 5-h incubations with reef corals performed just after sunset or prior to sunrise, reductions in the abundance of photosynthetic picoeukaryotes, Prochlorococcus and Synechococcus cells, were observed. Of the three Synechococcus groups, one decreased significantly during incubations with each coral and the other two only with M. mirabilis. Removal of carbon from the water column is based on coral consumption rates of phytoplankton and averaged between 138 ng h −1 and 387 ng h −1 , depending on the coral species. A lack of coral-dependent reduction in heterotrophic bacteria, differences in Synechococcus reductions, and diurnal variation in reductions of Synechococcus and Prochlorococcus , coinciding with peak cell division, point to selective feeding by corals. Our study indicates that bentho-pelagic coupling via selective grazing of microbial groups influences carbon flow and supports heterogeneity of microbial communities overlying coral reefs. IMPORTANCE We identify interactions between coral grazing behavior and the growth rates and cell abundances of pelagic microbial groups found surrounding a Caribbean reef. During incubation experiments with three reef corals, reductions in microbial cell abundance differed according to coral species and suggest specific coral or microbial mechanisms are at play. Peaks in removal rates of Prochlorococcus and Synechococcus cyanobacteria appear highest during postsunset incubations and coincide with microbial cell division. Grazing rates and effort vary across coral species and picoplankton groups, possibly influencing overall microbial composition and abundance over coral reefs. For reef corals, use of such a numerically abundant source of nutrition may be advantageous, especially under environmentally stressful conditions when symbioses with dinoflagellate algae break down. 
    more » « less
  3. null (Ed.)
    Planktonic communities constitute the basis of life in marine environments and have profound impacts in geochemical cycles. In the North Atlantic, seasonality drives annual transitions in the ecology of the water column. Phytoplankton bloom annually in spring as a result of these transitions, creating one of the major biological pulses in productivity on earth. The timing and geographical distribution of the spring bloom as well as the resulting biomass accumulation have largely been studied using the global capacity of satellite imaging. However, fine-scale variability in the taxonomic composition, spatial distribution, seasonal shifts, and ecological interactions with heterotrophic bacterioplankton has remained largely uncharacterized. The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) conducted four meridional transects to characterize plankton ecosystems in the context of the annual bloom cycle. Using 16S rRNA gene-based community profiles we analyzed the temporal and spatial variation in plankton communities. Seasonality in phytoplankton and bacterioplankton composition was apparent throughout the water column, with changes dependent on the hydrographic origin. From winter to spring in the subtropic and subpolar subregions, phytoplankton shifted from the predominance of cyanobacteria and picoeukaryotic green algae to diverse photosynthetic eukaryotes. By autumn, the subtropics were dominated by cyanobacteria, while a diverse array of eukaryotes dominated the subpolar subregions. Bacterioplankton were also strongly influenced by geographical subregions. SAR11, the most abundant bacteria in the surface ocean, displayed higher richness in the subtropics than the subpolar subregions. SAR11 subclades were differentially distributed between the two subregions. Subclades Ia.1 and Ia.3 co-occurred in the subpolar subregion, while Ia.1 dominated the subtropics. In the subtropical subregion during the winter, the relative abundance of SAR11 subclades “II” and 1c.1 were elevated in the upper mesopelagic. In the winter, SAR202 subclades generally prevalent in the bathypelagic were also dominant members in the upper mesopelagic zones. Co-varying network analysis confirmed the large-scale geographical organization of the plankton communities and provided insights into the vertical distribution of bacterioplankton. This study represents the most comprehensive survey of microbial profiles in the western North Atlantic to date, revealing stark seasonal differences in composition and richness delimited by the biogeographical distribution of the planktonic communities. 
    more » « less
  4. null (Ed.)
  5. Abstract

    The Bay of Bengal (BoB) is a 2,600,000 km2expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients—which have low temperature variation (27–29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters,Prochlorococcusaveraged 11.7 ± 4.4 × 104 cells ml−1, predominantly HLII, whereas LLII and ‘rare’ ecotypes, HLVI and LLVII, dominated in the SCM.Synechococcusaveraged 8.4 ± 2.3 × 104 cells ml−1in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites,OstreococcusClade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea‐influenced high salinity (southerly; prasinophytes) to freshwater‐influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyteMicromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml−1, surface) where a novelOstreococcuswas revealed, named hereOstreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto ‘rare’ picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.

    more » « less
  6. null (Ed.)