skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D intrusions transport active surface microbial assemblages to the dark ocean
Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.  more » « less
Award ID(s):
2230811
PAR ID:
10543769
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
19
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes. 
    more » « less
  2. Abstract. Recent earth system models predict a 10 %–20 % decrease in particulate organic carbon export from the surface ocean by the end of the21st century due to global climate change. This decline is mainly caused by increased stratification of the upper ocean, resulting in reducedshallow subsurface nutrient concentrations and a slower supply of nutrients to the surface euphotic zone in low latitudes. These predictions,however, do not typically account for associated changes in remineralization depths driven by sinking-particle size. Here we combinesatellite-derived export and particle size maps with a simple 3-D global biogeochemical model that resolves dynamic particle size distributions toinvestigate how shifts in particle size may buffer or amplify predicted changes in surface nutrient supply and therefore export production. We showthat higher export rates are empirically correlated with larger sinking particles and presumably larger phytoplankton, particularly in tropical andsubtropical regions. Incorporating these empirical relationships into our global model shows that as circulation slows, a decrease in export isassociated with a shift towards smaller particles, which sink more slowly and are thus remineralized shallower. This shift towards shallowerremineralization in turn leads to greater recycling of nutrients in the upper water column and thus faster nutrient recirculation into the euphoticzone. The end result is a boost in productivity and export that counteracts the initial circulation-driven decreases. This negative feedbackmechanism (termed the particle-size–remineralization feedback) slows export decline over the next century by ∼ 14 % globally (from −0.29to −0.25 GtC yr−1) and by ∼ 20 % in the tropical and subtropical oceans, where export decreases are currently predicted tobe greatest. Our findings suggest that to more accurately predict changes in biological pump strength under a warming climate, earth system modelsshould include dynamic particle-size-dependent remineralization depths. 
    more » « less
  3. Abstract Photosynthesis in the surface ocean and subsequent export of a fraction of this fixed carbon leads to carbon dioxide sequestration in the deep ocean. Ecological relationships among plankton functional groups and theoretical relationships between particle size and sinking rate suggest that carbon export from the euphotic zone is more efficient when communities are dominated by large organisms. However, this hypothesis has never been tested against measured size spectra spanning the >5 orders of magnitude found in plankton communities. Using data from five ocean regions (California Current Ecosystem, North Pacific subtropical gyre, Costa Rica Dome, Gulf of Mexico, and Southern Ocean subtropical front), we quantified carbon‐based plankton size spectra from heterotrophic bacteria to metazoan zooplankton (size class cutoffs varied slightly between regions) and their relationship to net primary production and sinking particle flux. Slopes of the normalized biomass size spectra (NBSS) varied from −1.6 to −1.2 (median slope of −1.4 equates to large 1–10 mm organisms having a biomass equal to only 7.6% of the biomass in small 1–10 μm organisms). Net primary production was positively correlated with the NBSS slope, with a particularly strong relationship in the microbial portion of the size spectra. While organic carbon export co‐varied with NBSS slope, we found only weak evidence that export efficiency is related to plankton community size spectra. Multi‐variate statistical analysis suggested that properties of the NBSS added no explanatory power over chlorophyll, primary production, and temperature. Rather, the results suggest that both plankton size spectra and carbon export increase with increasing system productivity. 
    more » « less
  4. Abstract The eastern Indian Ocean is substantially under sampled with respect to the biological carbon pump – the suite of processes that transport the carbon fixed by phytoplankton into the deeper ocean. Using sediment traps and other ecosystem measurements, we quantified sinking organic matter flux and investigated the characteristics of sinking particles in waters overlying the Argo Abyssal Plain directly downstream of the Indonesian Throughflow off northwest Australia. Carbon export from the euphotic zone averaged 7.0 mmol C m-2d-1, which equated to an average export efficiency (export / net primary production) of 0.17. Sinking particle flux within the euphotic zone (beneath the mixed layer, but above the deep chlorophyll maximum) averaged slightly higher than flux at the base of the euphotic zone, suggesting that the deep euphotic zone was a depth stratum of net particle remineralization. Carbon flux attenuation continued into the twilight zone with a transfer efficiency (export at euphotic depth + 100m / export at euphotic depth) of 0.62 and an average Martin’sb-value of 1.1. Within the euphotic zone, fresh phytoplankton (chlorophyll associated with sinking particles, possibly contained within appendicularian houses) were an important component of sinking particles, but beneath the euphotic zone the fecal pellets of herbivorous zooplankton (phaeopigments) were more important. Changes in carbon and nitrogen isotopic composition with depth further reflected remineralization processes occurring as particles sank. We show similarities with biological carbon pump functioning in a similar semi-enclosed oligotrophic marginal sea, the Gulf of Mexico, including net remineralization across the deep chlorophyll maximum. Submitted to: Deep-sea Research II HighlightsDespite low productivity, export efficiency was 17% of primary productionFlux attenuation beneath the euphotic zone (EZ) was low for a tropical regionSinking particle flux from the upper to lower EZ exceeded export from lower EZThe deep EZ was a stratum of net particle remineralization (and net heterotrophy) 
    more » « less
  5. null (Ed.)
    In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems. 
    more » « less