skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Choi, Daehyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vortex recapture underpins the exceptional mobility of nature’s finest fliers and swimmers. Utilized by agile fruit flies and efficient jellyfish, this phenomenon is well-documented in bulk fluids. Despite extensive studies on the neuston—a vital fluidic interface where diverse life forms interact between air and water—neuston vortical hydrodynamics remain unexplored. We investigate epineuston (on water) vortical hydrodynamics inMicrovelia americana, one of the smallest and fastest water striders, skating at 50 BL/s (15 cm/s). Their middle legs shed counter-rotating vortices, re-energized by hind legs, demonstrating epineuston vortex recapture. High-speed imaging, particle imaging velocimetry, physical models, and CFD simulations show re-energization increases thrust by creating positive pressure at the hind tarsi, acting as a virtual wall. This vortex capture is facilitated by the tripod gait, leg morphology, and precise spatio-temporal placement of the hind tarsi during the power stroke. Our study extends vortex recapture principles from bulk fluids to the neuston, offering insights into efficient epineuston locomotion, where surface tension and capillary waves challenge movement. Understanding epineuston vortex hydrodynamics can guide the development of energy-efficient microrobots to explore the planet’s neuston niches, critical frontlines of climate change and pollution. 
    more » « less