Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polarimetric imaging has a wide range of applications for uncovering features invisible to human eyes and conventional imaging sensors. Chip-integrated, fast, cost-effective, and accurate full-Stokes polarimetric imaging sensors are highly desirable in many applications, which, however, remain elusive due to fundamental material limitations. Here we present a chip-integratedMetasurface-based Full-StokesPolarimetricImaging sensor (MetaPolarIm) realized by integrating an ultrathin (~600 nm) metasurface polarization filter array (MPFA) onto a visible imaging sensor with CMOS compatible fabrication processes. The MPFA is featured with broadband dielectric-metal hybrid chiral metasurfaces and double-layer nanograting polarizers. This chip-integrated polarimetric imaging sensor enables single-shot full-Stokes imaging (speed limited by the CMOS imager) with the most compact form factor, records high measurement accuracy, dual-color operation (green and red) and a field of view up to 40 degrees. MetaPolarIm holds great promise to enable transformative applications in autonomous vision, industry inspection, space exploration, medical imaging and diagnosis.more » « less
-
Abstract Structural color printings have broad applications due to their advantages of long-term sustainability, eco-friendly manufacturing, and ultra-high resolution. However, most of them require costly and time-consuming fabrication processes from nanolithography to vacuum deposition and etching. Here, we demonstrate a new color printing technology based on polymer-assisted photochemical metal deposition (PPD), a room temperature, ambient, and additive manufacturing process without requiring heating, vacuum deposition or etching. The PPD-printed silver films comprise densely aggregated silver nanoparticles filled with a small amount (estimated <20% volume) of polymers, producing a smooth surface (roughness 2.5 nm) even better than vacuum-deposited silver films (roughness 2.8 nm) at ~4 nm thickness. Further, the printed composite films have a much larger effective refractive indexn(~1.90) and a smaller extinction coefficientk(~0.92) than PVD ones in the visible wavelength range (400 to 800 nm), therefore modulating the surface reflection and the phase accumulation. The capability of PPD in printing both ultra-thin (~5 nm) composite films and highly reflective thicker film greatly benefit the design and construction of multilayered Fabry–Perot (FP) cavity structures to exhibit vivid and saturated colors. We demonstrated programmed printing of complex pictures of different color schemes at a high spatial resolution of ~6.5 μm by three-dimensionally modulating the top composite film geometries and dielectric spacer thicknesses (75 to 200 nm). Finally, PPD-based color picture printing is demonstrated on a wide range of substrates, including glass, PDMS, and plastic, proving its broad potential in future applications from security labeling to color displays.more » « less
-
Abstract Optical metasurfaces, consisting of subwavelength‐scale meta‐atom arrays, hold great promise of overcoming the fundamental limitations of conventional optics. Due to their structural complexity, metasurfaces usually require high‐resolution yet slow and expensive fabrication processes. Here, using a metasurface polarimetric imaging device as an example, the photonic structures and the Nanoimprint lithography (NIL) processes are designed, creating two separate NIL molds over a patterning area of > 20 mm2with designed Moiré alignment markers by electron‐beam writing, and further subsequently integrate silicon and aluminum metasurface structures on a chip. Uniquely, the silicon and aluminum metasurfaces are fabricated by using the nanolithography and 3D pattern‐transfer capabilities of NIL, respectively, achieving nanometer‐scale linewidth uniformity, sub‐200 nm translational overlay accuracy, and <0.017 rotational alignment error while significantly reducing fabrication complexity and surface roughness. The micro‐sized multilayer metasurfaces have high circular polarization extinction ratios as large as ≈20 and ≈80 in blue and red wavelengths. Further, the metasurface chip‐integrated CMOS imager demonstrates high accuracy in broad‐band, full Stokes parameter analysis in the visible wavelength ranges and single‐shot polarimetric imaging. This novel, NIL‐based, multilayered nanomanufacturing approach is applicable to the scalable production of large‐area functional structures for ultra‐compact optic, electronic, and quantum devices.more » « less
-
null (Ed.)Solid-state nanopore sensors have broad applications from single-molecule biosensing to diagnostics and sequencing. Prevalent nanopore sensors are fabricated on silicon (Si) substrates through micromachining, however, the high capacitive noise resulting from Si conductivity has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers by anisotropic wet etching of sapphire through micro-patterned triangular masks. Reproducible formation of small membranes with an average dimension of ~10 μm are demonstrated. For validation, a sapphire-supported (SaS) nanopore chip, with a 100 times larger membrane area than silicon-supported (SiS) nanopore, showed 130 times smaller capacitance (10 pF) and ~2.5 times smaller rootmean-square (RMS) noise current (~20 pA over 100 kHz bandwidth). Tested with 1k bp double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable platform feasible for biosensing as well as a wide variety of MEMS applications.more » « less
-
Abstract In conventional optical microscopes, image contrast of objects mainly results from the differences in light intensity and/or color. Muller matrix optical microscopes (MMMs), on the other hand, can provide significantly enhanced image contrast and rich information about objects by analyzing their interactions with polarized light. However, state‐of‐the‐art MMMs are fundamentally limited by bulky and slow polarization state generators and analyzers. Here, the study demonstrates a metasurface‐based MMM, i.e., Meta‐MMM, which is equipped with a chip‐integrated, single‐shot metasurface polarization state analyzer (Meta‐PSA). The Meta‐MMM is featured with high‐speed measurement (≈2s per Muller matrix (MM) image), superior operation stability, dual‐color operation, and high measurement accuracy (measurement error 1–2%) for MM imaging. The Meta‐MMM is applied to nanostructure characterization, surface morphology analysis, and discovering birefringent structures in honeybee wings. The Meta‐MMMs hold the promise to revolutionize various applications from biological imaging, medical diagnosis, and material characterization to industry inspection and space exploration.more » « less