Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available September 9, 2025
-
An electronic solid with itinerant carriers and localized magnetic moments represents a paradigmatic strongly correlated system. The electrical transport properties associated with the itinerant carriers, as they scatter off these local moments, have been scrutinized across a number of materials. Here, we analyze the transport characteristics associated with ultraclean PdCrO
—a quasi-two-dimensional material consisting of alternating layers of itinerant Pd-electrons and Mott-insulating CrO layers—which shows a pronounced regime of T -linear resistivity over a wide range of intermediate temperatures. By contrasting these observations to the transport properties in a closely related material PdCoO, where the CoO layers are band-insulators, we can rule out the traditional electron–phonon interactions as being responsible for this interesting regime. We propose a previously ignored electron-magneto-elastic interaction between the Pd-electrons, the Cr local moments and an out-of-plane phonon as the main scattering mechanism that leads to the significant enhancement of resistivity and a T -linear regime in PdCrOat temperatures far in excess of the magnetic ordering temperature. We suggest a number of future experiments to confirm this picture in PdCrO as well as other layered metallic/Mott-insulating materials. -
Abstract What limits the value of the superconducting transition temperature ( T c ) is a question of great fundamental and practical importance. Various heuristic upper bounds on T c have been proposed, expressed as fractions of the Fermi temperature, T F , the zero-temperature superfluid stiffness, ρ s (0), or a characteristic Debye frequency, ω 0 . We show that while these bounds are physically motivated and are certainly useful in many relevant situations, none of them serve as a fundamental bound on T c . To demonstrate this, we provide explicit models where T c / T F (with an appropriately defined T F ), T c / ρ s (0), and T c / ω 0 are unbounded.more » « less