Magic-angle twisted bilayer graphene (MATBG) exhibits a panoply of many-body phenomena that are intimately tied to the appearance of narrow and well-isolated electronic bands. The microscopic ingredients that are responsible for the complex experimental phenomenology include electron–electron (phonon) interactions and nontrivial Bloch wavefunctions associated with the narrow bands. Inspired by recent experiments, we focus on two independent quantities that are considerably modified by Coulomb interaction-driven band renormalization, namely the density of states and the minimal spatial extent associated with the Wannier functions. First, we show that a filling-dependent enhancement of the density of states, caused by band flattening, in combination with phonon-mediated attraction due to electron-phonon umklapp processes, increases the tendency towards superconducting pairing in a range of angles around magic-angle. Second, we demonstrate that the minimal spatial extent associated with the Wannier functions, which contributes towards increasing the superconducting phase stiffness, also develops a nontrivial enhancement due to the interaction-induced renormalization of the Bloch wavefunctions. While our modeling of superconductivity (SC) assumes a weak electron-phonon coupling and does not consider many of the likely relevant correlation effects, it explains simply the experimentally observed robustness of SC in the wide range of angles that occurs in the relevant range more »
- Award ID(s):
- 1753306
- Publication Date:
- NSF-PAR ID:
- 10304836
- Journal Name:
- npj Quantum Materials
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2397-4648
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Moiré superlattices in two-dimensional van der Waals heterostructures provide an efficient way to engineer electron band properties. The recent discovery of exotic quantum phases and their interplay in twisted bilayer graphene (tBLG) has made this moiré system one of the most renowned condensed matter platforms. So far studies of tBLG have been mostly focused on the lowest two flat moiré bands at the first magic angle θ m1 ∼ 1.1°, leaving high-order moiré bands and magic angles largely unexplored. Here we report an observation of multiple well-isolated flat moiré bands in tBLG close to the second magic angle θ m2 ∼ 0.5°, which cannot be explained without considering electron–election interactions. With high magnetic field magnetotransport measurements we further reveal an energetically unbound Hofstadter butterfly spectrum in which continuously extended quantized Landau level gaps cross all trivial band gaps. The connected Hofstadter butterfly strongly evidences the topologically nontrivial textures of the multiple moiré bands. Overall, our work provides a perspective for understanding the quantum phases in tBLG and the fractal Hofstadter spectra of multiple topological bands.
-
Abstract We argue that the unusually strong electron–electron interactions in the narrow bands in moiré superlattices originate from compact Wannier orbitals. Enhanced overlaps of electronic wavefunctions, enabled by such orbitals, result in a strong el–el superlattice umklapp scattering. We identify the umklapp scattering processes as a source of the strong temperature-dependent resistivity observed in these systems. In a simple model, the umklapp scattering predicts a
T -dependent resistivity that grows asT 2with a numerical prefactor that grows as the Wannier orbital radius decreases. We quantify the enhancement in el–el scattering by the Kadowaki–Woods (KW) ratio, a quantity that is sensitive to umklapp scattering but, helpfully, insensitive to the effects due to the high density of electronic states. Our analysis predicts anomalously large KW ratio values that clearly indicate the importance of the umklapp el–el processes and their impact on theT -dependent resistivity. -
Engineering moiré superlattices by twisting layers in van der Waals (vdW) heterostructures has uncovered a wide array of quantum phenomena. We constructed a vdW heterostructure that consists of three graphene layers stacked with alternating twist angles ±θ. At the average twist angle θ ~ 1.56°, a theoretically predicted “magic angle” for the formation of flat electron bands, we observed displacement field–tunable superconductivity with a maximum critical temperature of 2.1 kelvin. By tuning the doping level and displacement field, we found that superconducting regimes occur in conjunction with flavor polarization of moiré bands and are bounded by a van Hove singularity (vHS) at high displacement fields. Our findings display inconsistencies with a weak coupling description, suggesting that the observed moiré superconductivity has an unconventional nature.
-
Abstract PdTe is a superconductor with
T c ~ 4.25 K. Recently, evidence for bulk-nodal and surface-nodeless gap features has been reported in PdTe. Here, we investigate the physical properties of PdTe in both the normal and superconducting states via specific heat and magnetic torque measurements and first-principles calculations. BelowT c, the electronic specific heat initially decreases inT 3behavior (1.5 K <T <T c) then exponentially decays. Using the two-band model, the superconducting specific heat can be well described with two energy gaps: one is 0.372 meV and another 1.93 meV. The calculated bulk band structure consists of two electron bands (α and β) and two hole bands (γ and η) at the Fermi level. Experimental detection of the de Haas-van Alphen (dHvA) oscillations allows us to identify four frequencies (F α = 65 T,F β = 658 T,F γ = 1154 T, andF η = 1867 T forH //a ), consistent with theoretical predictions. Nontrivial α and β bands are further identified via both calculations and the angle dependence of the dHvA oscillations. Our results suggest that PdTe is a candidate for unconventional superconductivity. -
We calculate STM signatures of correlated ground-states at integer filling of the magic angle twisted bilayer graphene narrow bands. First, we compute the fully-interacting TBG spectral function at ±4 electrons/moiré unit cell and show that it can be used to experimentally validate the strong-coupling approach. Although variation exists in the data, we find experimental evidence for the strong-coupling regime. For all other integer fillings of the flat bands, we consider the spatial features of the corresponding spectral functions of many states in the large degenerate ground-state manifold, and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the K-IVC state and its nonchiral U(4) rotations do not exhibit any KD, while T-IVC does. We analyze 14 different many-body correlated states and show that their combined STM/Chern number signal can be used to uniquely determine the nature of the many-body ground-state. Their STM signal and features are obtained over a large range of energies and model parameters.