skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chowdhury, Mosharaf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 12, 2026
  2. Free, publicly-accessible full text available November 4, 2025
  3. Compute and memory are tightly coupled within each server in traditional datacenters. Large-scale datacenter operators have identified this coupling as a root cause behind fleetwide resource underutilization and increasing Total Cost of Ownership (TCO). With the advent of ultra-fast networks and cache-coherent interfaces, memory disaggregation has emerged as a potential solution, whereby applications can leverage available memory even outside server boundaries. This paper summarizes the growing research landscape of memory disaggregation from a software perspective and introduces the challenges toward making it practical under current and future hardware trends. We also reflect on our seven-year journey in the SymbioticLab to build a comprehensive disaggregated memory system over ultra-fast networks. We conclude with some open challenges toward building next-generation memory disaggregation systems leveraging emerging cache-coherent interconnects. 
    more » « less
  4. The end of Dennard scaling and the slowing of Moore's Law has put the energy use of datacenters on an unsustainable path. Datacenters are already a significant fraction of worldwide electricity use, with application demand scaling at a rapid rate. We argue that substantial reductions in the carbon intensity of datacenter computing are possible with a software-centric approach: by making energy and carbon visible to application developers on a fine-grained basis, by modifying system APIs to make it possible to make informed trade offs between performance and carbon emissions, and by raising the level of application programming to allow for flexible use of more energy efficient means of compute and storage. We also lay out a research agenda for systems software to reduce the carbon footprint of datacenter computing. 
    more » « less