- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0003100002000000
- More
- Availability
-
33
- Author / Contributor
- Filter by Author / Creator
-
-
Chowdhury, Tanmoy (6)
-
Zhao, Liang (6)
-
Ling, Chen (4)
-
Do, Nguyen (3)
-
Thai, My T (3)
-
Aresh Beheshti Shirazi, Seyed (1)
-
Gao, Yuyang (1)
-
Guo, Xiaojie (1)
-
Homayoun, Houman (1)
-
Jiang, Junji (1)
-
Manoj P D, Sai (1)
-
Mirzaeian, Ali (1)
-
Saber Latibari, Banafsheh (1)
-
Sasan, Avesta (1)
-
Savidis, Ioannis (1)
-
Vakil, Ashkan (1)
-
Wang, Junxiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Chowdhury, Tanmoy; Ling, Chen; Jiang, Junji; Wang, Junxiang; Thai, My T; Zhao, Liang (, Neural Networks)Free, publicly-accessible full text available December 1, 2025
-
Do, Nguyen; Chowdhury, Tanmoy; Ling, Chen; Zhao, Liang (, Society for Industrial and Applied Mathematics)
-
Do, Nguyen; Chowdhury, Tanmoy; Ling, Chen; Zhao, Liang; Thai, My T (, AISTAT 2024)Free, publicly-accessible full text available May 25, 2025
-
Do, Nguyen; Chowdhury, Tanmoy; Ling, Chen; Zhao, Liang; Thai, My T (, AISTAT 2024)
-
Chowdhury, Tanmoy; Vakil, Ashkan; Saber Latibari, Banafsheh; Aresh Beheshti Shirazi, Seyed; Mirzaeian, Ali; Guo, Xiaojie; Manoj P D, Sai; Homayoun, Houman; Savidis, Ioannis; Zhao, Liang; et al (, GLSVLSI '22: Proceedings of the Great Lakes Symposium on VLSI)This paper presents RAPTA, a customized Representation-learning Architecture for automation of feature engineering and predicting the result of Path-based Timing-Analysis early in the physical design cycle. RAPTA offers multiple advantages compared to prior work: 1) It has superior accuracy with errors std ranges 3.9ps~16.05ps in 32nm technology. 2) RAPTA's architecture does not change with feature-set size, 3) RAPTA does not require manual input feature engineering. To the best of our knowledge, this is the first work, in which Bidirectional Long Short-Term Memory (Bi-LSTM) representation learning is used to digest raw information for feature engineering, where generation of latent features and Multilayer Perceptron (MLP) based regression for timing prediction can be trained end-to-end.more » « less