Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fe 1+ y Te 1− x Se x is characterized by its complex magnetic phase diagram and highly orbital-dependent band renormalization. Despite this, the behavior of nematicity and nematic fluctuations, especially for high tellurium concentrations, remains largely unknown. Here we present a study of both B 1 g and B 2 g nematic fluctuations in Fe 1+ y Te 1− x Se x (0 ≤ x ≤ 0.53) using the technique of elastoresistivity measurement. We discovered that the nematic fluctuations in two symmetry channels are closely linked to the corresponding spin fluctuations, confirming the intertwined nature of these two degrees of freedom. We also revealed an unusual temperature dependence of the nematic susceptibility, which we attributed to a loss of coherence of the d x y orbital. Our results highlight the importance of orbital differentiation on the nematic properties of iron-based materials.more » « lessFree, publicly-accessible full text available December 1, 2024
-
Abstract As one of the most fundamental physical phenomena, charge density wave (CDW) order predominantly occurs in metallic systems such as quasi‐one‐dimensional (quasi‐1D) metals, doped cuprates, and transition metal dichalcogenides, where it is well understood in terms of Fermi surface nesting and electron‐phonon coupling mechanisms. On the other hand, CDW phenomena in semiconducting systems, particularly at the low carrier concentration limit, are less common and feature intricate characteristics, which often necessitate the exploration of novel mechanisms, such as electron‐hole coupling or Mott physics, to explain. In this study, we combined electrical transport, synchrotron X‐ray diffraction and density‐functional theory (DFT) calculations to investigate CDW order and a series of hysteretic phase transitions in a dilute d ‐band semiconductor, BaTiS 3 . Our experimental and theoretical findings suggest that the observed CDW order and phase transitions in BaTiS 3 may be attributed to both electron‐phonon coupling and non‐negligible electron‐electron interactions in the system. Our work highlights BaTiS 3 as a unique platform to explore CDW physics and novel electronic phases in the dilute filling limit and could open new opportunities for developing novel electronic devices. This article is protected by copyright. All rights reservedmore » « lessFree, publicly-accessible full text available August 4, 2024
-
Free, publicly-accessible full text available June 1, 2024
-
Abstract The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-
x Inx S2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function ofx and provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves fromc -axis ferromagnetism at to a canted antiferromagnetic (AFM) structure with redu$$x = 0$$ c edc -axis moment and in-plane AFM order at and further reduced$$x = 0.12$$ c -axis FM moment at . Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport.$$x = 0.3$$ Free, publicly-accessible full text available December 1, 2023 -
Abstract A Chern insulator is a two-dimensional material that hosts chiral edge states produced by the combination of topology with time reversal symmetry breaking. Such edge states are perfect one-dimensional conductors, which may exist not only on sample edges, but on any boundary between two materials with distinct topological invariants (or Chern numbers). Engineering of such interfaces is highly desirable due to emerging opportunities of using topological edge states for energy-efficient information transmission. Here, we report a chiral edge-current divider based on Chern insulator junctions formed within the layered topological magnet MnBi 2 Te 4 . We find that in a device containing a boundary between regions of different thickness, topological domains with different Chern numbers can coexist. At the domain boundary, a Chern insulator junction forms, where we identify a chiral edge mode along the junction interface. We use this to construct topological circuits in which the chiral edge current can be split, rerouted, or switched off by controlling the Chern numbers of the individual domains. Our results demonstrate MnBi 2 Te 4 as an emerging platform for topological circuits design.more » « lessFree, publicly-accessible full text available December 1, 2023
-
Abstract Kagome materials have become solid grounds to study the interplay among geometry, topology, correlation, and magnetism. Recently, niobium halide semiconductors Nb 3 X 8 ( X = Cl, Br, I) have been predicted to be two-dimensional magnets and these materials are also interesting for their breathing kagome geometry. However, experimental electronic structure studies of these promising materials are still lacking. Here, we report the spectroscopic evidence of flat and weakly dispersing bands in breathing-kagome semiconductor Nb 3 I 8 around 500 meV binding energy, which is well supported by our first-principles calculations. These bands originate from the breathing kagome lattice of niobium atoms and have niobium d -orbital character. They are found to be sensitive to the polarization of the incident photon beam. Our study provides insight into the electronic structure and flat band topology in an exfoliable kagome semiconductor, thereby providing an important platform to understand the interaction of geometry and electron correlations in two-dimensional materials.more » « lessFree, publicly-accessible full text available December 1, 2023
-
Abstract The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets. Using time-resolved X-ray diffraction and optical linear dichroism measurements, interlayer shear is identified as the primary structural degree of freedom that couples with magnetic order. The recovery times of both shear and magnetic order upon optical excitation diverge at the magnetic ordering temperature with the same critical exponent. The time-dependent Ginzburg-Landau theory shows that this concurrent critical slowing down arises from a linear coupling of the interlayer shear to the magnetic order, which is dictated by the broken mirror symmetry intrinsic to the monoclinic stacking. Our results highlight the importance of interlayer shear in ultrafast control of magnetic order via spin-mechanical coupling.more » « lessFree, publicly-accessible full text available December 1, 2023
-
Abstract Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe 1− x Se x . We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized d x y orbital with the remaining itinerant iron 3 d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in d x y as Se concentration is reduced.more » « lessFree, publicly-accessible full text available December 1, 2023