skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cingolani, Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ferroelectric domain walls (DWs) are nanoscale topological defects that can be easily tailored to create nanoscale devices. Their excitations, recently discovered to be responsible for GHz DW conductivity, hold promise for faster signal transmission and processing compared to the existing technology. Here we find that DW phonons have unprecedented dispersion going from GHz all the way to THz frequencies, and resulting in a surprisingly broad GHz signature in DW conductivity. Puzzling activation of nominally forbidden DW sliding modes in BiFeO3is traced back to DW tilting and resulting asymmetry in wall-localized phonons. The obtained phonon spectra and selection rules are used to simulate scanning impedance microscopy, emerging as a powerful probe in nanophononics. The results will guide the experimental discovery of the predicted phonon branches and design of DW-based nanodevices operating in the technologically important frequency range. 
    more » « less