skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Domain wall-localized phonons in BiFeO3: spectrum and selection rules
Abstract Ferroelectric domain walls (DWs) are nanoscale topological defects that can be easily tailored to create nanoscale devices. Their excitations, recently discovered to be responsible for GHz DW conductivity, hold promise for faster signal transmission and processing compared to the existing technology. Here we find that DW phonons have unprecedented dispersion going from GHz all the way to THz frequencies, and resulting in a surprisingly broad GHz signature in DW conductivity. Puzzling activation of nominally forbidden DW sliding modes in BiFeO3is traced back to DW tilting and resulting asymmetry in wall-localized phonons. The obtained phonon spectra and selection rules are used to simulate scanning impedance microscopy, emerging as a powerful probe in nanophononics. The results will guide the experimental discovery of the predicted phonon branches and design of DW-based nanodevices operating in the technologically important frequency range.  more » « less
Award ID(s):
1707372
PAR ID:
10226611
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
6
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub‐100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high‐quality single‐crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first‐principles based modeling (including four‐phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness‐dependent thermal conductivity. The results show that the phonons with sub‐100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric‐domain‐engineered systems for oxide perovskite‐based functional materials. 
    more » « less
  2. Abstract Spatially resolved vibrational mapping of nanostructures is indispensable to the development and understanding of thermal nanodevices 1 , modulation of thermal transport 2 and novel nanostructured thermoelectric materials 3–5 . Through the engineering of complex structures, such as alloys, nanostructures and superlattice interfaces, one can significantly alter the propagation of phonons and suppress material thermal conductivity while maintaining electrical conductivity 2 . There have been no correlative experiments that spatially track the modulation of phonon properties in and around nanostructures due to spatial resolution limitations of conventional optical phonon detection techniques. Here we demonstrate two-dimensional spatial mapping of phonons in a single silicon–germanium (SiGe) quantum dot (QD) using monochromated electron energy loss spectroscopy in the transmission electron microscope. Tracking the variation of the Si optical mode in and around the QD, we observe the nanoscale modification of the composition-induced red shift. We observe non-equilibrium phonons that only exist near the interface and, furthermore, develop a novel technique to differentially map phonon momenta, providing direct evidence that the interplay between diffuse and specular reflection largely depends on the detailed atomistic structure: a major advancement in the field. Our work unveils the non-equilibrium phonon dynamics at nanoscale interfaces and can be used to study actual nanodevices and aid in the understanding of heat dissipation near nanoscale hotspots, which is crucial for future high-performance nanoelectronics. 
    more » « less
  3. Abstract Engineering of phonons, that is, collective lattice vibrations in crystals, is essential for manipulating physical properties of materials such as thermal transport, electron‐phonon interaction, confinement of lattice vibration, and optical polarization. Most approaches to phonon‐engineering have been largely limited to the high‐quality heterostructures of III–V compound semiconductors. Yet, artificial engineering of phonons in a variety of materials with functional properties, such as complex oxides, will yield unprecedented applications of coherent tunable phonons in future quantum acoustic devices. In this study, artificial engineering of phonons in the atomic‐scale SrRuO3/SrTiO3superlattices is demonstrated, wherein tunable phonon modes are observed via confocal Raman spectroscopy. In particular, the coherent superlattices led to the backfolding of acoustic phonon dispersion, resulting in zone‐folded acoustic phonons in the THz frequency domain. The frequencies can be largely tuned from 1 to 2 THz via atomic‐scale precision thickness control. In addition, a polar optical phonon originating from the local inversion symmetry breaking in the artificial oxide superlattices is observed, exhibiting emergent functionality. The approach of atomic‐scale heterostructuring of complex oxides will vastly expand material systems for quantum acoustic devices, especially with the viability of functionality integration. 
    more » « less
  4. This article shows experimentally that an external electric field affects the velocity of the longitudinal acoustic phonons (vLA), thermal conductivity (κ), and diffusivity (D) in a bulk lead zirconium titanate–based ferroelectric. Phonon conduction dominates κ, and the observations are due to changes in the phonon dispersion, not in the phonon scattering. This gives insight into the nature of the thermal fluctuations in ferroelectrics, namely, phonons labeled ferrons that carry heat and polarization. It also opens the way for phonon-based electrically driven all-solid-state heat switches, an enabling technology for solid-state heat engines. A quantitative theoretical model combining piezoelectric strain and phonon anharmonicity explains the field dependence ofvLA, κ, andDwithout any adjustable parameters, thus connecting thermodynamic equilibrium properties with transport properties. The effect is four times larger than previously reported effects, which were ascribed to field-dependent scattering of phonons. 
    more » « less
  5. Abstract This work explores the 2D interfacial energy transport between monolayer WSe2and SiO2while considering the thermal nonequilibrium between optical and acoustic phonons caused by photoexcitation. Recent modeling and experimental work have shown substantial temperature differences between optical and acoustic phonons (ΔTOA) in various nanostructures upon laser irradiation. Generally, characterizations of interfacial thermal resistance (R′′tc) at the nanoscale are difficult and depend on Raman‐probed temperature measurements, which only reveal optical phonon temperature information. Here it is shown that ΔTOAfor supported monolayer WSe2can be as high as 48% of the total temperature rise revealed by optothermal Raman methods—a significant proportion that can introduce sizeable error toR′′tcmeasurements if not properly considered. A frequency energy transport state‐resolved Raman technique (FET‐Raman) along with a 3D finite volume modeling of 2D material laser heating is used to extract the true interfacial thermal resistanceR′′tc(determined by acoustic phonon transport). Additionally, a novel ET‐Raman technique is developed to determine the energy coupling factorGbetween optical and acoustic phonons (on the order of 1015W m−3K−1). This work demonstrates the need for special consideration of thermal nonequilibriums during laser–matter interactions at the nanoscale. 
    more » « less