Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study truthful mechanisms for approximating the Maximin-Share (MMS) allocation of agents with additive valuations for indivisible goods. Algorithmically, constant factor approximations exist for the problem for any number of agents. When adding incentives to the mix, a jarring result by Amanatidis, Birmpas, Christodoulou, and Markakis [EC 2017] shows that the best possible approximation for two agents and m items is ⌊m2⌋. We adopt a learning-augmented framework to investigate what is possible when some prediction on the input is given. For two agents, we give a truthful mechanism that takes agents' ordering over items as prediction. When the prediction is accurate, we give a 2-approximation to the MMS (consistency), and when the prediction is off, we still get an ⌈m2⌉-approximation to the MMS (robustness). We further show that the mechanism's performance degrades gracefully in the number of mistakes" in the prediction; i.e., we interpolate (up to constant factors) between the two extremes: when there are no mistakes, and when there is a maximum number of mistakes. We also show an impossibility result on the obtainable consistency for mechanisms with finite robustness. For the general case of n≥2 agents, we give a 2-approximation mechanism for accurate predictions, with relaxed fallback guarantees. Finally, we give experimental results which illustrate when different components of our framework, made to insure consistency and robustness, come into play.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)Online allocation is a broad class of problems where items arriving online have to be allocated to agents who have a fixed utility/cost for each assigned item so to maximize/minimize some objective. This framework captures a broad range of fundamental problems such as the Santa Claus problem (maximizing minimum utility), Nash welfare maximization (maximizing geometric mean of utilities), makespan minimization (minimizing maximum cost), minimization of 𝓁_p-norms, and so on. We focus on divisible items (i.e., fractional allocations) in this paper. Even for divisible items, these problems are characterized by strong super-constant lower bounds in the classical worst-case online model. In this paper, we study online allocations in the learning-augmented setting, i.e., where the algorithm has access to some additional (machine-learned) information about the problem instance. We introduce a general algorithmic framework for learning-augmented online allocation that produces nearly optimal solutions for this broad range of maximization and minimization objectives using only a single learned parameter for every agent. As corollaries of our general framework, we improve prior results of Lattanzi et al. (SODA 2020) and Li and Xian (ICML 2021) for learning-augmented makespan minimization, and obtain the first learning-augmented nearly-optimal algorithms for the other objectives such as Santa Claus, Nash welfare, 𝓁_p-minimization, etc. We also give tight bounds on the resilience of our algorithms to errors in the learned parameters, and study the learnability of these parameters.more » « less
-
Vizing’s celebrated theorem asserts that any graph of maximum degree ∆ admits an edge coloring using at most ∆ + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2∆−1 colors, is optimal among online algorithms. Their lower bound has a caveat, however: it only applies to lowdegree graphs, with ∆ = O(log n), and they conjectured the existence of online algorithms using ∆(1 + o(1)) colors for ∆ = ω(log n). Progress towards resolving this conjecture was only made under stochastic arrivals (Aggarwal et al., FOCS’03 and Bahmani et al., SODA’10). We resolve the above conjecture for adversarial vertex arrivals in bipartite graphs, for which we present a (1+o(1))∆-edge-coloring algorithm for ∆ = ω(log n) known a priori. Surprisingly, if ∆ is not known ahead of time, we show that no (e/(e−1)−Ω(1))∆-edge-coloring algorithm exists.We then provide an optimal, (e/(e−1) +o(1))∆-edge-coloring algorithm for unknown ∆ = ω(log n). Key to our results, and of possible independent interest, is a novel fractional relaxation for edge coloring, for which we present optimal fractional online algorithms and a near-lossless online rounding scheme, yielding our optimal randomized algorithms.more » « less