Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite advances in digitizing vision and hearing, touch still lacks an equivalent digital interface matching the fidelity of human perception. This gap limits the quality of digital tactile information and the realism of virtual experiences. Here, we introduce a step toward human-resolution haptics: a class of wearable tactile displays designed to match the spatial and temporal acuity of the human fingertip. Our device, VoxeLite, is a 0.1-millimeter-thick, 0.19-gram, skin-conformal array of individually addressable soft electroadhesive actuators (“nodes”). As users touch and move across surfaces, VoxeLite delivers high-resolution distributed forces via the nodes. Enabled by scalable microfabrication techniques, the display achieves actuator densities up to 110 nodes per square centimeter, produces stimuli up to 800 hertz, and remains transparent to real-world tactile input. We demonstrate its ability to render small-scale hapticons and virtual textures and transmit physical surfaces, validated through human psychophysics and biomimetic sensing. These findings position VoxeLite as a platform for human-resolution haptics in immersive interfaces, robotics, and digital touch communication.more » « lessFree, publicly-accessible full text available November 21, 2026
-
Behnke, Sven; Ryu, Jee-Hwan; Pucci, Daniele; Santos, Veronica J (Ed.)We present a new upper-limb anthropomorphic dexterous telemanipulation system, the Dexterity Testbed Nexus(DexNex). DexNex is teleoperated by a human user in theOperator Station who controls the Avatar Station to complete temanipulation tasks. The Avatar replicates the upper limbs of a human and is statically mounted to the workspace. Three benchmarking tasks were used: box & blocks, the MinnesotaTurning Test revised form (MTTrf), and a table setting task.Subjects completed the tasks with their natural bodies to provide normative data. Subjects then attempted the same tasks with haptic feedback enabled or disabled. The utility of haptics was computed for four metrics. Haptic feedback improved performance for three of the four metrics (26% increase in Box& Blocks score, 12% increased Table Setting success rate, and 1.3x faster time per success in Table Setting).more » « less
-
Electroadhesive (EA) clutches are promising for advanced motion and force control in robotics, haptics, and rehabilitation, owing to their compactness and light weight. However, their practical use is limited by the inability to deliver high forces at low voltages, primarily due to a lack of understanding of their mechanics. We introduce a novel deformable body fracture mechanics approach and high-resolution strain field imaging to reveal that nonuniform stress distributions cause EA clutches to fail through delamination and crack propagation. Using this insight, we developed EA clutches sustaining 22 newtons over 1 square centimeter at 100 volts, achieving the highest stress per voltage among similar clutches. This was achieved by incorporating a soft interlayer and peeling stopper for uniform stress distribution and mitigating the failure modes. These EA clutches were integrated into a lightweight ring-based wearable system for finger rehabilitation and haptics. Our findings lay the groundwork for designing low-voltage, high-performance EA clutches for next-generation motion and force control applications.more » « lessFree, publicly-accessible full text available February 14, 2026
-
Not AvailableGenerating salient and intuitively understood haptic feedback on the human finger through a non-intrusive wearable remains a challenge in haptic device development. Most existing solutions either restrict the hand and finger’s natural range of motion or impede sensory perception, quickly becoming intrusive during dexterous manipulation tasks. Here, we introduce NURing (Non-intrUsive Ring), a tendon-actuated haptic device that provides kinesthetic feedback by deflecting the finger. The NURing is easily donned and doffed, enabling on-demand kinesthetic feedback while leaving the hand and fingers free for dexterous tasks. We demonstrate that the device delivers perceptually salient feedback and evaluate its performance through a series of uniaxial motion guidance tasks. The lightweight NURing device, measuring approximately 220 g, can generate guidance cues at up to 1 Hz, enabling participants to identify target directions in under 3 s with a 1.5° steady-state error, corresponding to a fingertip deviation of less than 11mm. Additionally, it can guide users along complex, smooth trajectories with an average trajectory error of 7°. These findings highlight the effectiveness of fingertip deflection as a kinesthetic feedback modality, enabling precise guidance for real-world applications such as sightless touchscreen navigation, assistive technology, and both industrial and consumer augmented/virtual reality systems.more » « lessFree, publicly-accessible full text available July 8, 2026
-
In this article, we characterize the passivity of a class of haptic systems modeled as a simple sampled-data system. We guarantee passivity by ensuring that there is sufficient damping in the haptic interface. Previous work established a necessary and sufficient bound on damping, but the corresponding mathematical expressions were complicated, and the derivation was not completely rigorous. After providing a rigorous proof, we derive a more tractable expression. Using this improved expression, we establish passivity conditions for several classes of transfer functions representing virtual environments, including some special cases with time delay. The original results assumed that the operator can be modeled by a passive but otherwise arbitrary transfer function. This assumption is weakened to allow the operator model to have a shortage of passivity. This requires only a slight modification of the passivity bound.more » « less
-
We present PixeLite, a novel haptic device that produces distributed lateral forces on the fingerpad. PixeLite is 0.15 mm thick, weighs 1.00 g, and consists of a 4×4 array of electroadhesive brakes (“pucks”) that are each 1.5 mm in diameter and spaced 2.5 mm apart. The array is worn on the fingertip and slid across an electrically grounded countersurface. It can produce perceivable excitation up to 500 Hz. When a puck is activated at 150 V at 5 Hz, friction variation against the countersurface causes displacements of 627 ± 59 μ m. The displacement amplitude decreases as frequency increases, and at 150 Hz is 47 ± 6 μ m. The stiffness of the finger, however, causes a substantial amount of mechanical puck-to-puck coupling, which limits the ability of the array to create spatially localized and distributed effects. A first psychophysical experiment showed that PixeLite's sensations can be localized to an area of about 30% of the total array area. A second experiment, however, showed that exciting neighboring pucks out of phase with one another in a checkerboard pattern did not generate perceived relative motion. Instead, mechanical coupling dominates the motion, resulting in a single frequency felt by the bulk of the finger.more » « less
-
Not AvailableThis study investigates the effects of two stimulation modalities (stretch and vibration) on natural touch sensation on the volar forearm. The skin-textile interaction was implemented by scanning three natural textures across the left forearm. The resulting in-plane displacements across the skin were recorded by the digital image correlation technique to capture the information imparted by the textures. The texture recordings were used to create three playback modes (stretch, vibration, and both), which were reproduced on the right forearm. Two psychophysical experiments compared the physical texture scans to rendered texture playbacks. The first experiment used a matching task and found that to maximize perceptual realism, i.e., similarity to a physical reference, subjects preferred the rendered texture to have a playback intensity of approximately 1X – 2X higher on DC components (stretch), and 1X – 3.5X higher on AC components (vibration), varying across textures. The second experiment elicited similarity ratings between the texture scans and playbacks and showed that a combination of both stretch and vibration was required to create differentiated texture sensations. However, the intensity amplification and use of both stretch and vibration were still insufficient to create fully realistic texture sensations. We conclude that mechanisms beyond singlesite uniaxial stimuli are needed to reproduce realistic textural sensations.more » « less
An official website of the United States government

Full Text Available