skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coloma, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Statistical modeling and interpolation of space–time processes has gained increasing relevance over the last few years. However, real world data often exhibit characteristics that challenge conventional methods such as nonstationarity and temporal misalignment. For example, high frequency solar irradiance data are typically observed at fine temporal scales, but at sparse spatial sampling, so space–time interpolation is necessary to support solar energy studies. The nonstationarity and phase misalignment of such data challenges extant approaches. We propose random elastic space–time (REST) prediction, a novel method that addresses temporally-varying phase misalignment by combining elastic alignment and conventional kriging techniques. Moreover, uncertainty in both amplitude and phase alignment can be readily quantified in a conditional simulation framework, whereas conventional space–time methods only address am- plitude uncertainty. We illustrate our approach on a challenging solar irradiance dataset, where our method demonstrates superior predictive distributions compared to existing geostatistical and functional data analytic techniques. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026