Kinetic simulations of relativistic turbulence have significantly advanced our understanding of turbulent particle acceleration. Recent progress has highlighted the need for an updated acceleration theory that can account for particle acceleration within the plasma’s coherent structures. Here, we investigate how intermittency modeling connects statistical fluctuations in turbulence to regions of high-energy dissipation. This connection is established by employing a generalized She–Leveque model to characterize the exponents
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ζ p for the structure functions . The fitting of the scaling exponents provides us with a measure of the codimension of the dissipative structures, for which we subsequently determine the filling fraction. We perform our analysis for a range of magnetizationsσ and relative fluctuation amplitudesδ B 0/B 0. We find that increasing values ofσ andδ B 0/B 0allow the turbulent cascade to break sheetlike structures into smaller regions of dissipation that resemble chains of flux ropes. However, as their dissipation measure increases, the dissipative regions become less volume filling. With this work, we aim to inform future turbulent acceleration theories that incorporate particle energization from interactions with coherent structures within relativistic turbulence. -
Abstract The recent discovery of astrophysical neutrinos from the Seyfert galaxy NGC 1068 suggests the presence of nonthermal protons within a compact “coronal” region close to the central black hole. The acceleration mechanism of these nonthermal protons remains elusive. We show that a large-scale magnetic reconnection layer, of the order of a few gravitational radii, may provide such a mechanism. In such a scenario, rough energy equipartition between magnetic fields, X-ray photons, and nonthermal protons is established in the reconnection region. Motivated by recent 3D particle-in-cell simulations of relativistic reconnection, we assume that the spectrum of accelerated protons is a broken power law, with the break energy being constrained by energy conservation (i.e., the energy density of accelerated protons is at most comparable to the magnetic energy density). The proton spectrum is
below the break and above the break, with IceCube neutrino observations suggestings ≃ 3. Protons above the break lose most of their energy within the reconnection layer via photohadronic collisions with the coronal X-rays, producing a neutrino signal in good agreement with the recent observations. Gamma rays injected in photohadronic collisions are cascaded to lower energies, sustaining the population of electron–positron pairs that makes the corona moderately Compton thick.