skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conley, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Cretaceous period is the time of the first appearance of the diatoms in the fossil record. These fossils give us direct evidence of the age and early evolution of the diatom lineage. The fossil record, however, is incomplete and therefore often extrapolated through time‐calibrated phylogenies. These two approaches offer different perspectives on the early evolution of diatoms, which is still poorly understood. We compiled the first comprehensive Cretaceous Diatom Database, a tool to investigate the taxonomy, diversity, and occurrence of the earliest known diatom lineages. To further aid the integration and use of the oldest diatom fossils in molecular clock analyses, we present a set of well‐documented Cretaceous fossils that can be placed onto molecular phylogenetic trees of extant and extinct species, making them ideal candidates for the calibration of molecular clocks. The analysis of the fossil record and the Cretaceous Diatom Database revealed Cretaceous diversity is substantially greater than previously thought, yet considerable taxonomic work is still needed. The Cretaceous Diatom Database and the list of Cretaceous fossils for calibrating molecular clocks represent valuable resources for future evolutionary and taxonomic studies of modern and fossil diatoms. 
    more » « less
  2. Abstract Molecular clocks estimate that diatom microalgae, one of Earth’s foremost primary producers, originated near the Triassic–Jurassic boundary (200 Ma), which is close in age to the earliest, generally accepted diatom fossils of the genus Pyxidicula . During an extensive search for Jurassic diatoms from twenty-five sites worldwide, three sites yielded microfossils initially recognized as diatoms. After applying stringent safeguards and evaluation criteria, however, the fossils found at each of the three sites were rejected as new diatom records. This led us to systematically reexamine published evidence in support of Lower- and Middle-Jurassic Pyxidicula fossils . Although Pyxidicula resembles some extant radial centric diatoms and has character states that may have been similar to those of ancestral diatoms, we describe numerous sources of uncertainty regarding the reliability of these records. We conclude that the Lower Jurassic Pyxidicula fossils were most likely calcareous nannofossils, whereas the Middle Jurassic Pyxidicula species has been reassigned to the Lower Cretaceous and is likely a testate amoeba, not a diatom. Excluding the Pyxidicula fossils widens the gap between the estimated time of origin and the oldest abundant fossil diatom record to 75 million years. This study underscores the difficulties in discovering and validating ancient microfossils. 
    more » « less
  3. Piganeau, Gwenael (Ed.)
    Abstract Numerous factors shape the evolution of protein-coding genes, including shifts in the strength or type of selection following gene duplications or changes in the environment. Diatoms and other silicifying organisms use a family of silicon transporters (SITs) to import dissolved silicon from the environment. Freshwaters contain higher silicon levels than oceans, and marine diatoms have more efficient uptake kinetics and less silicon in their cell walls, making them better competitors for a scarce resource. We compiled SITs from 37 diatom genomes to characterize shifts in selection following gene duplications and marine–freshwater transitions. A deep gene duplication, which coincided with a whole-genome duplication, gave rise to two gene lineages. One of them (SIT1–2) is present in multiple copies in most species and is known to actively import silicon. These SITs have evolved under strong purifying selection that was relaxed in freshwater taxa. Episodic diversifying selection was detected but not associated with gene duplications or habitat shifts. In contrast, genes in the second SIT lineage (SIT3) were present in just half the species, the result of multiple losses. Despite conservation of SIT3 in some lineages for the past 90–100 million years, repeated losses, relaxed selection, and low expression highlighted the dispensability of SIT3, consistent with a model of deterioration and eventual loss due to relaxed selection on SIT3 expression. The extensive but relatively balanced history of duplications and losses, together with paralog-specific expression patterns, suggest diatoms continuously balance gene dosage and expression dynamics to optimize silicon transport across major environmental gradients. 
    more » « less
  4. Abstract. We extend the ecological component (ECOGEM) of the carbon-centric Grid-Enabled Integrated Earth system model (cGEnIE) to include a diatom functional group. ECOGEM represents plankton community dynamics via a spectrum of ecophysiological traits originally based on size and plankton food web (phyto- and zooplankton; EcoGEnIE 1.0), which we developed here to account for a diatom functional group (EcoGEnIE 1.1). We tuned EcoGEnIE 1.1, exploring a range of ecophysiological parameter values specific to phytoplankton, including diatom growth and survival (18 parameters over 550 runs) to achieve best fits to observations of diatom biogeography and size class distribution as well as to global ocean nutrient and dissolved oxygen distributions. This, in conjunction with a previously developed representation of opal dissolution and an updated representation of the ocean iron cycle in the water column, resulted in an improved distribution of dissolved oxygen in the water column relative to the previous EcoGEnIE 1.0, with global export production (7.4 Gt C yr−1) now closer to previous estimates. Simulated diatom biogeography is characterised by larger size classes dominating at high latitudes, notably in the Southern Ocean, and smaller size classes dominating at lower latitudes. Overall, diatom biological productivity accounts for ∼20 % of global carbon biomass in the model, with diatoms outcompeting other phytoplankton functional groups when dissolved silica is available due to their faster maximum photosynthetic rates and reduced palatability to grazers. Adding a diatom functional group provides the cGEnIE Earth system model with an extended capability to explore ecological dynamics and their influence on ocean biogeochemistry. 
    more » « less
  5. In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO 2 DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO 2 DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO 2 DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO 2 DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O 2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O 2 will improve our understanding of the ocean O 2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO 2 DAT will allow scientists to fully harness the increasing volumes of O 2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO 2 DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO 2 DAT is proposed highlighting the efforts needed (e.g., in terms of human resources). 
    more » « less