Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nikel, Pablo Ivan (Ed.)ABSTRACT Polyhydroxyalkanoates are a diverse class of microbially synthesized polymers that are used to make bioplastics with a wide range of applications. As interest in polyhydroxyalkanoates (PHAs) grows, researchers are faced with a challenge: how best to use the resources at their disposal to reliably quantify PHA produced by their microbe(s) of choice. Investigators must weigh the pros and cons of each method against logistical constraints (e.g., time, money, and equipment) and technical concerns (e.g., accuracy and sensitivity). At the same time, the broader community of scientists researching PHAs should aspire to land on a set of best practices. To this end, we must continually audit our methods. Here, we offer readers a snapshot of popular and emerging approaches for quantifying PHA in the lab. For each method, we provide an overview,list the primary equipment, briefly describe the methods, including improvements or iterations, and discuss the pros and cons of the approach. Along the way, we highlight gaps in research and make recommendations about best practices and future directions.more » « lessFree, publicly-accessible full text available September 17, 2026
-
Reguera, Gemma (Ed.)ABSTRACT With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers onRhodopseudomonas palustrisTIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1’s genome by a phage integration system, developed in this study. Our results show that deletion ofphaRincreases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2. In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganismRhodopseudomonas palustrisTIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of thephaRorphaZgenes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.more » « less
-
Purple photosynthetic bacteria are emerging as both valuable biotechnological tools and important players in various ecosystems. This extended abstract highlights recent research from the Bose lab at Washington University in St. Louis touching on both of these ideas. Specifically, it discusses the use of "electrotrophic" bacteria as biocatalysts for microbial electrosynthesis, and the prevalence of these microbes in ecosystems like marine wetlands.more » « less
-
Abstract Microbial biofilms are ubiquitous. In marine and freshwater ecosystems, microbe–mineral interactions sustain biogeochemical cycles, while biofilms found on plants and animals can range from pathogens to commensals. Moreover, biofouling and biocorrosion represent significant challenges to industry. Bioprocessing is an opportunity to take advantage of biofilms and harness their utility as a chassis for biocommodity production. Electrochemical bioreactors have numerous potential applications, including wastewater treatment and commodity production. The literature examining these applications has demonstrated that the cell–surface interface is vital to facilitating these processes. Therefore, it is necessary to understand the state of knowledge regarding biofilms’ role in bioprocessing. This mini-review discusses bacterial biofilm formation, cell–surface redox interactions, and the role of microbial electron transfer in bioprocesses. It also highlights some current goals and challenges with respect to microbe-mediated bioprocessing and future perspectives.more » « less
An official website of the United States government
