Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 22, 2026
-
Free, publicly-accessible full text available December 10, 2025
-
Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air–water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.more » « less
-
Spontaneous oxidation of compounds containing diverse X=Y moieties (e.g., sulfonamides, ketones, esters, sulfones) occurs readily in organic-solvent microdroplets. This surprising phenomenon is proposed to be driven by the generation of an intermediate species [M+H 2 O] +· : a covalent adduct of water radical cation (H 2 O +· ) with the reactant molecule (M). The adduct is observed in the positive ion mass spectrum while its formation in the interfacial region of the microdroplet (i.e., at the air-droplet interface) is indicated by the strong dependence of the oxidation product formation on the spray distance (which reflects the droplet size and consequently the surface-to-volume ratio) and the solvent composition. Importantly, based on the screening of a ca. 21,000-compound library and the detailed consideration of six functional groups, the formation of a molecular adduct with the water radical cation is a significant route to ionization in positive ion mode electrospray, where it is favored in those compounds with X=Y moieties which lack basic groups. A set of model monofunctional systems was studied and in one case, benzyl benzoate, evidence was found for oxidation driven by hydroxyl radical adduct formation followed by protonation in addition to the dominant water radical cation addition process. Significant implications of molecular ionization by water radical cations for oxidation processes in atmospheric aerosols, analytical mass spectrometry and small-scale synthesis are noted.more » « less
-
Reactions in microdroplets can be accelerated and can present unique chemistry compared to reactions in bulk solution. Here, we report the accelerated oxidation of aromatic sulfones to sulfonic acids in microdroplets under ambient conditions without the addition of acid, base, or catalyst. The experimental data suggest that the water radical cation, (H2O)+•, derived from traces of water in the solvent, is the oxidant. The substrate scope of the reaction indicates the need for a strong electron-donating group (e.g., p-hydroxyl) in the aromatic ring. An analogous oxidation is observed in an aromatic ketone with benzoic acid production. The shared mechanism is suggested to involve field-assisted ionization of water at the droplet/air interface, its reaction with the sulfone (M) to form the radical cation adduct, (M + H2O)+•, followed by 1,2-aryl migration and C–O cleavage. A remarkably high reaction rate acceleration (∼103) and regioselectivity (∼100-fold) characterize the reaction.more » « less
-
Systematic screening of accelerated chemical reactions at solid/solution interfaces has been carried out in high-throughput fashion using desorption electrospray ionization mass spectrometry and it provides evidence that glass surfaces accelerate various base-catalyzed chemical reactions. The reaction types include elimination, solvolysis, condensation and oxidation, whether or not the substrates are pre-charged. In a detailed mechanistic study, we provide evidence using nanoESI showing that glass surfaces can act as strong bases and convert protic solvents into their conjugate bases which then act as bases/nucleophiles when participating in chemical reactions. In aprotic solvents such as acetonitrile, glass surfaces act as ‘green’ heterogeneous catalysts that can be recovered and reused after simple rinsing. Besides their use in organic reaction catalysis, glass surfaces are also found to act as degradation reagents for phospholipids with increasing extents of degradation occurring at low concentrations. This finding suggests that the storage of base/nucleophile-labile compounds or lipids in glass containers should be avoided.more » « less
-
Abstract Microdroplets show unique chemistry, especially in their intrinsic redox properties, and to this we here add a case of simultaneous and spontaneous oxidation and reduction. We report the concurrent conversions of several phosphonates to phosphonic acids by reduction (R−P → H−P) and to pentavalent phosphoric acids by oxidation. The experimental results suggest that the active reagent is the water radical cation/anion pair. The water radical cation is observed directly as the ionized water dimer while the water radical anion is only seen indirectly though the spontaneous reduction of carbon dioxide to formate. The coexistence of oxidative and reductive species in turn supports the proposal of a double‐layer structure at the microdroplet surface, where the water radical cation and radical anion are separated and accumulated.more » « less
An official website of the United States government
