skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cordonnier, Benoît"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The onset of brittle failure in rocks includes dilatancy and strain localization. To better understand this nucleation process, we analyze the evolution of the local three‐dimensional strain tensor using X‐ray tomograms acquired during triaxial compression experiments on granite and sandstone. The onset of the localization of the compaction, dilation, and shear strain occurs when ∼65% of the rock volume experiences dilation. Tracking the locations of the high strains throughout loading suggests that the deformation that occurs early in loading influences the location of the system‐sized fracture network that produces macroscopic failure. This influence is larger in the sandstone experiments than the granite experiments, likely due to the microstructure of the sandstone. These results have important implications for detecting precursors to catastrophic failure. 
    more » « less
  2. Abstract The spatial organization of deformation may provide key information about the timing of catastrophic failure in the brittle regime. In an ideal homogenous system, deformation may continually localize toward macroscopic failure, and so increasing localization unambiguously signals approaching failure. However, recent analyses demonstrate that deformation, including low‐magnitude seismicity, and fractures and strain in triaxial compression experiments, experience temporary phases of delocalization superposed on an overall trend of localization toward large failure events. To constrain the conditions that promote delocalization, we perform a series of X‐ray tomography experiments at varying confining pressures (5–20 MPa) and fluid pressures (0–10 MPa) on Westerly granite cores with varying amounts of preexisting damage. We track the spatial distribution of the strain events with the highest magnitudes of the population within a given time step. The results show that larger confining pressure promotes more dilation, and promotes greater localization of the high strain events approaching macroscopic failure. In contrast, greater amounts of preexisting damage promote delocalization. Importantly, the dilative strain experiences more systematic localization than the shear strain, and so may provide more reliable information about the timing of catastrophic failure than the shear strain. 
    more » « less