skip to main content

Search for: All records

Creators/Authors contains: "Coughlin, Michael W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 12, 2024
  2. Abstract

    Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more telescope time. Widely used in operations research and telescope scheduling, mixed-integer linear programming is a strong candidate to produce these higher-efficiency schedules, as it can make use of powerful commercial solvers that find globally optimal solutions to provided problems. We detail a new target-of-opportunity scheduling algorithm designed with Zwicky Transient Facility in mind that uses mixed-integer linear programming. We compare its performance togwemopt, the tuned heuristic scheduler used by the Zwicky Transient Facility and other facilities during the third LIGO–Virgo gravitational-wave observing run. This new algorithm uses variable-length observing blocks to enforce cadence requirements and to ensure field observability, along with having a secondary optimization step to minimize slew time. We show that by employing a hybrid method utilizing both this scheduler andgwemopt, the previous scheduler used, in concert, we can achieve an average improvement in detection efficiency of 3%–11% overgwemoptalone for a simulated binary neutron star merger data set consistent with LIGO–Virgo’s third observing run, highlighting the potential ofmore »mixed-integer target of opportunity schedulers for future multimessenger follow-up surveys.

    « less
  3. ABSTRACT

    S190426c/GW190426_152155 was the first probable neutron star–black hole merger candidate detected by the LIGO-Virgo Collaboration. We undertook a tiled search for optical counterparts of this event using the 0.7-m GROWTH-India Telescope. Over a period of two weeks, we obtained multiple observations over a 22.1 deg2 area, with a 17.5 per cent probability of containing the source location. Initial efforts included obtaining photometry of sources reported by various groups, and a visual search for sources in all galaxies contained in the region. Subsequently, we have developed an image subtraction and candidate vetting pipeline with $\sim 94{{\ \rm per\ cent}}$ efficiency for transient detection. Processing the data with this pipeline, we find several transients, but none that are compatible with kilonova models. We present the details of our observations, the working of our pipeline, results from the search, and our interpretations of the non-detections that will work as a pathfinder during the O4 run of LVK.

  4. Abstract

    The limiting temporal resolution of a time-domain survey in detecting transient behavior is set by the time between observations of the same sky area. We analyze the distribution of visit separations for a range of Vera C. Rubin Observatory cadence simulations. Simulations from families v1.5–v1.7.1 are strongly peaked at the 22 minute visit pair separation and provide effectively no constraint on temporal evolution within the night. This choice will necessarily prevent Rubin from discovering a wide range of astrophysical phenomena in time to trigger rapid follow-up. We present a science-agnostic metric to supplement detailed simulations of fast-evolving transients and variables and suggest potential approaches for improving the range of timescales explored.

  5. Abstract In recent years, there have been significant advances in multimessenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r -process nucleosynthesis in the ejected material during and after merger, the so-called kilonova, and particularly on black hole−neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole or a neutron star. We show quantitatively how improved mappingmore »between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters.« less
  6. Abstract

    Searches for electromagnetic counterparts of gravitational-wave signals have redoubled since the first detection in 2017 of a binary neutron star merger with a gamma-ray burst, optical/infrared kilonova, and panchromatic afterglow. Yet, one LIGO/Virgo observing run later, there has not yet been a second, secure identification of an electromagnetic counterpart. This is not surprising given that the localization uncertainties of events in LIGO and Virgo’s third observing run, O3, were much larger than predicted. We explain this by showing that improvements in data analysis that now allow LIGO/Virgo to detect weaker and hence more poorly localized events have increased the overall number of detections, of which well-localized,gold-platedevents make up a smaller proportion overall. We present simulations of the next two LIGO/Virgo/KAGRA observing runs, O4 and O5, that are grounded in the statistics of O3 public alerts. To illustrate the significant impact that the updated predictions can have, we study the follow-up strategy for the Zwicky Transient Facility. Realistic and timely forecasting of gravitational-wave localization accuracy is paramount given the large commitments of telescope time and the need to prioritize which events are followed up. We include a data release of our simulated localizations as a public proposal planning resource formore »astronomers.

    « less
  7. null (Ed.)
    ABSTRACT Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole–neutron star candidates has highlighted the need for a better discrimination criterion to support this effort. At the moment, low-latency gravitational-wave alerts contain preliminary information about binary properties and hence whether a detected binary might have an electromagnetic counterpart. The current alert method is a classifier that estimates the probability that there is a debris disc outside the black hole created during the merger as well as the probability of a signal being a binary neutron star, a black hole–neutron star, a binary black hole, or of terrestrial origin. In this work, we expand upon this approach to both predict the ejecta properties and provide contours of potential light curves for these events, in order to improve the follow-up observation strategy. The various sources of uncertainty are discussed, and we conclude that our ignorance about the ejecta composition and the insufficient constraint of the binary parameters by low-latency pipelines represent the main limitations. To validate the method, we test our approach on real events from themore »second and third Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)–Virgo observing runs.« less