skip to main content

Search for: All records

Creators/Authors contains: "Crawford, T M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Star-forming galaxies are rich reservoirs of dust, both warm and cold. But the cold dust emission is faint alongside the relatively bright and ubiquitous warm dust emission. Recently, evidence for a very cold dust (VCD) component has also been revealed via millimetre/submillimetre (mm/sub-mm) photometry of some galaxies. This component, despite being the most massive of the three dust components in star-forming galaxies, is by virtue of its very low temperature, faint and hard to detect together with the relatively bright emission from warmer dust. Here, we analyse the dust content of a carefully selected sample of four galaxies detected by IRAS, WISE, and South Pole Telescope (SPT), whose spectral energy distributions (SEDs) were modelled to constrain their potential cold dust content. Low-frequency radio observations using the Giant Metrewave Radio Telescope (GMRT) were carried out to segregate cold dust emission from non-thermal emission in mm/sub-mm wavebands. We also carried out AstroSat/Ultraviolet Imaging Telescope (UVIT) observations for some galaxies to constrain their SED at shorter wavelengths so as to enforce energy balance for the SED modelling. We constructed their SEDs across a vast wavelength range (extending from UV to radio frequencies) by assembling global photometry from GALEX FUV + NUV, UVIT,more »Johnson BRI, 2MASS, WISE, IRAC, IRAS, AKARI, ISO PHOT, Planck HFI, SPT, and GMRT. The SEDs were modelled with cigale to estimate their basic properties, in particular to constrain the masses of their total and VCD components. Although the galaxies’ dust masses are dominated by warmer dust, there are hints of VCD in two of the targets, NGC 7496 and NGC 7590.« less
  2. Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1 σ detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg 2 SPT-SZ survey and targeted optical and X-ray follow-up data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers σ 8 Ω m / 0.3 0.5 = 0.831 ± 0.020 . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1 σ CMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of state w by a factor of 1.3 to σ ( w ) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be for σ 8 , where adding CMB-cluster lensing data tomore »the cluster number counts reduces the expected uncertainty on σ 8 by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4.« less
    Free, publicly-accessible full text available June 1, 2023
  3. ABSTRACT

    We search for the signature of cosmological shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the latest Compton-y maps from the 2500 deg2 SPT-SZ survey on the locations of clusters identified in that same data set. The sample contains 516 clusters with mean mass $\langle M_{\rm 200m}\rangle = 10^{14.9} \, {\rm M}_\odot$ and redshift 〈z〉 = 0.55. We analyse in parallel a set of zoom-in hydrodynamical simulations from the three hundred project. The SPT-SZ data show two features: (i) a pressure deficit at R/R200m = 1.08 ± 0.09, measured at 3.1σ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = 4.58 ± 1.24 at 2.0σ significance. The pressure deficit is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyse clusters from the Planck and Atacama Cosmologymore »Telescope Polarimeter surveys and find quantitatively similar features in the pressure profiles. Finally, we compare the accretion shock radius ($R_{\rm sh,\, acc}$) with existing measurements of the splashback radius (Rsp) for SPT-SZ and constrain the lower limit of the ratio, $R_{\rm sh,\, acc}/R_{\rm sp}\gt 2.16 \pm 0.59$.

    « less
  4. Abstract

    We present component-separated maps of the primary cosmic microwave background/kinematic Sunyaev–Zel’dovich (SZ) amplitude and the thermal SZ Compton-yparameter, created using data from the South Pole Telescope (SPT) and the Planck satellite. These maps, which cover the ∼2500 deg2of the southern sky imaged by the SPT-SZ survey, represent a significant improvement over previous such products available in this region by virtue of their higher angular resolution (1.′25for our highest-resolution Compton-ymaps) and lower noise at small angular scales. In this work we detail the construction of these maps using linear combination techniques, including our method for limiting the correlation of our lowest-noise Compton-ymap products with the cosmic infrared background. We perform a range of validation tests on these data products to test our sky modeling and combination algorithms, and we find good performance in all of these tests. Recognizing the potential utility of these data products for a wide range of astrophysical and cosmological analyses, including studies of the gas properties of galaxies, groups, and clusters, we make these products publicly available athttp://pole.uchicago.edu/public/data/sptsz_ymapand on the NASA/LAMBDA website.

  5. Abstract

    We present the first measurements of asteroids in millimeter wavelength data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two ∼270 deg2sky regions near the ecliptic plane, each observed with the SPTpol camera ∼100 times over 1 month. We subtract the mean of all maps of a given field, removing static sky signal, and then average the mean-subtracted maps at known asteroid locations. We detect three asteroids—(324) Bamberga, (13) Egeria, and (22) Kalliope—with signal-to-noise ratios (S/N) of 11.2, 10.4, and 6.1, respectively, at 2.0 mm (150 GHz); we also detect (324) Bamberga with an S/N of 4.1 at 3.2 mm (95 GHz). We place constraints on these asteroids’ effective emissivities, brightness temperatures, and light-curve modulation amplitude. Our flux density measurements of (324) Bamberga and (13) Egeria roughly agree with predictions, while our measurements of (22) Kalliope suggest lower flux, corresponding to effective emissivities of 0.64 ± 0.11 at 2.0 and < 0.47 at 3.2 mm. We predict the asteroids detectable in other SPT data sets and find good agreement with detections of (772) Tanete and (1093) Freda in recent data from the SPT-3G camera, which hasmore »∼10× the mapping speed of SPTpol. This work is the first focused analysis of asteroids in data from CMB surveys, and it demonstrates we can repurpose historic and future data sets for asteroid studies. Future SPT measurements can help constrain the distribution of surface properties over a larger asteroid population.

    « less
  6. Abstract We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg 2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μ K arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be A ϕ = 0.949 ± 0.122 using the Bayesian pipeline, consistent with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist “bias hardening” or linear bias correction, and reducing the systematic uncertainty on A ϕ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain A ϕ along with A L , the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easilymore »infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on A ϕ and seven times lower effective lensing reconstruction noise.« less
    Free, publicly-accessible full text available December 1, 2022
  7. null (Ed.)
  8. Abstract

    SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful data set for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, millimeter-wave bright galaxies, and a variety of transient phenomena. The SPT-3G instrument provides a significant improvement in mapping speed over its predecessors, SPT-SZ and SPTpol. The broadband optics design of the instrument achieves a 430 mm diameter image plane across observing bands of 95, 150, and 220 GHz, with 1.2′ FWHM beam response at 150 GHz. In the receiver, this image plane is populated with 2690 dual-polarization, trichroic pixels (∼16,000 detectors) read out using a 68× digital frequency-domain multiplexing readout system. In 2018, SPT-3G began a multiyear survey of 1500 deg2of the southern sky. We summarize the unique optical, cryogenic, detector, and readout technologies employed in SPT-3G, and we report on the integrated performance of the instrument.