skip to main content


Title: The cold dust content of the nearby galaxies IC 5325, NGC 7496, NGC 7590, and NGC 7599
ABSTRACT Star-forming galaxies are rich reservoirs of dust, both warm and cold. But the cold dust emission is faint alongside the relatively bright and ubiquitous warm dust emission. Recently, evidence for a very cold dust (VCD) component has also been revealed via millimetre/submillimetre (mm/sub-mm) photometry of some galaxies. This component, despite being the most massive of the three dust components in star-forming galaxies, is by virtue of its very low temperature, faint and hard to detect together with the relatively bright emission from warmer dust. Here, we analyse the dust content of a carefully selected sample of four galaxies detected by IRAS, WISE, and South Pole Telescope (SPT), whose spectral energy distributions (SEDs) were modelled to constrain their potential cold dust content. Low-frequency radio observations using the Giant Metrewave Radio Telescope (GMRT) were carried out to segregate cold dust emission from non-thermal emission in mm/sub-mm wavebands. We also carried out AstroSat/Ultraviolet Imaging Telescope (UVIT) observations for some galaxies to constrain their SED at shorter wavelengths so as to enforce energy balance for the SED modelling. We constructed their SEDs across a vast wavelength range (extending from UV to radio frequencies) by assembling global photometry from GALEX FUV + NUV, UVIT, Johnson BRI, 2MASS, WISE, IRAC, IRAS, AKARI, ISO PHOT, Planck HFI, SPT, and GMRT. The SEDs were modelled with cigale to estimate their basic properties, in particular to constrain the masses of their total and VCD components. Although the galaxies’ dust masses are dominated by warmer dust, there are hints of VCD in two of the targets, NGC 7496 and NGC 7590.  more » « less
Award ID(s):
1852617
NSF-PAR ID:
10232680
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
504
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4143 to 4159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is significant scientific value to be gained from combining AKARI fluxes with data at other far-infrared (IR) wavelengths from the Infrared Astronomical Satellite (IRAS) and Herschel missions. To be able to do this we must ensure that there are no systematic differences between the data sets that need to be corrected before the fluxes are compatible with each other. One such systematic effect identified in the Bright Source Catalog version 1 (BSCv1) data is the issue of beam corrections. We determine these for the BSC version 2 (BSCv2) data by correlating ratios of appropriate IRAS and AKARI bands with the difference in 2 Micron All Sky Survey (2MASS) J-band extended and point source magnitudes for sources cross-matched between the IRAS Faint Source Catalog (FSC), AKARI BSCv2 and 2MASS catalogs. We find significant correlations (p ≪ 10 −13) indicating that beam corrections are necessary in the 65 and 90 μm bands. We then use these corrected fluxes to supplement existing data in spectral energy distribution (SED) fits for ultraluminous infrared galaxies (ULIRGs) in the Herschel ULIRG Survey (HERUS). The addition of AKARI fluxes makes little difference to the results of simple (T, β) fits to the SEDs of these sources, though there is a general decrease in reduced χ2 values. The utility of the extra AKARI data, however, is in allowing physically more realistic SED models with more parameters to be fitted to the data. We also extend our analysis of beam correction issues in the AKARI data by examining the Herschel Reference Sample (HRS) galaxies, which have Herschel photometry from 100 to 500 μm and which are more spatially extended than the HERUS ULIRGs. 34 of the HRS sources have good Herschel SEDs and matching data from AKARI. This investigation finds that our simple 2MASS-based beam correction scheme is inadequate for these larger and more complex sources. There are also indications that additional beam corrections at 140 and 160 μm are needed for these sources, extended on scales >1′.

     
    more » « less
  2. ABSTRACT

    The co-evolution of galaxies and supermassive black holes (SMBHs) underpins our understanding of galaxy evolution, but different methods to measure SMBH masses have only infrequently been cross-checked. We attempt to identify targets to cross-check two of the most accurate methods, megamaser, and cold molecular gas dynamics. Three promising galaxies are selected from all those with existing megamaser SMBH mass measurements. We present Atacama Large Millimeter/sub-millimeter Array (ALMA) 12CO (2–1) and 230-GHz continuum observations with angular resolutions of ≈0${_{.}^{\prime\prime}}$5. Every galaxy has an extended rotating molecular gas disc and 230-GHz continuum source(s), but all also have irregularities and/or non-axisymmetric features: NGC 1194 is highly inclined and has disturbed and lopsided central 12CO (2–1) emission; NGC 3393 has a nuclear disc with fairly regular but patchy 12CO (2–1) emission with little gas near the kinematic major axis, faint emission in the very centre, and two brighter structures reminiscent of a nuclear ring and/or spiral; NGC 5765B has a strong bar and very bright 12CO (2–1) emission concentrated along two bisymmetric offset dust lanes and two bisymmetric nuclear spiral arms. 12CO (2–1) and 12CO (3–2) observations with the James Clerk Maxwell Telescope are compared with the ALMA observations. Because of the disturbed gas kinematics and the impractically long integration times required for higher angular resolution observations, none of the three galaxies is suitable for a future SMBH mass measurement. None the less, increasing the number of molecular gas observations of megamaser galaxies is valuable, and the ubiquitous disturbances suggest a link between large-scale gas properties and the existence of megamasers.

     
    more » « less
  3. Abstract

    A complete census of dusty star-forming galaxies (DSFGs) at early epochs is necessary to constrain the obscured contribution to the cosmic star formation rate density (CSFRD); however, DSFGs beyondz∼ 4 are both rare and hard to identify from photometric data alone due to degeneracies in submillimeter photometry with redshift. Here, we present a pilot study obtaining follow-up Atacama Large Millimeter Array (ALMA) 2 mm observations of a complete sample of 39 850μm-bright dusty galaxies in the SSA22 field. Empirical modeling suggests 2 mm imaging of existing samples of DSFGs selected at 850μm—1 mm can quickly and easily isolate the “needle in a haystack” DSFGs that sit atz> 4 or beyond. Combining archival submillimeter imaging with our measured ALMA 2 mm photometry (1σ∼ 0.08 mJy beam−1rms), we characterize the galaxies’ IR spectral energy distributions (SEDs) and use them to constrain redshifts. With available redshift constraints fit via the combination of six submillimeter bands, we identify 6/39 high-zcandidates each with >50% likelihood to sit atz> 4, and find a positive correlation between redshift and 2 mm flux density. Specifically, our models suggest the addition of 2 mm to a moderately constrained IR SED will improve the accuracy of a millimeter-derived redshift from Δz/(1 +z) = 0.3 to Δz/(1 +z) = 0.2. Our IR SED characterizations provide evidence for relatively high-emissivity spectral indices (〈β〉 = 2.4 ± 0.3) in the sample. We measure that especially bright (S850μm> 5.55 mJy) DSFGs contribute ∼10% to the cosmic-averaged CSFRD from 2 <z< 5, confirming findings from previous work with similar samples.

     
    more » « less
  4. Abstract

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of CO(2–1) emission from the circumnuclear disks in two early-type galaxies, NGC 1380 and NGC 6861. The disk in each galaxy is highly inclined (i∼ 75°), and the projected velocities of the molecular gas near the galaxy centers are ∼300 km s−1in NGC 1380 and ∼500 km s−1in NGC 6861. We fit thin disk dynamical models to the ALMA data cubes to constrain the masses of the central black holes (BHs). We created host galaxy models using Hubble Space Telescope images for the extended stellar mass distributions and incorporated a range of plausible central dust extinction values. For NGC 1380, our best-fit model yieldsMBH= 1.47 × 108Mwith a ∼40% uncertainty. For NGC 6861, the lack of dynamical tracers within the BH’s sphere of influence due to a central hole in the gas distribution precludes a precise measurement ofMBH. However, our model fits require a value forMBHin the range of (1–3) × 109Min NGC 6861 to reproduce the observations. The BH masses are generally consistent with predictions from local BH–host galaxy scaling relations. Systematic uncertainties associated with dust extinction of the host galaxy light and choice of host galaxy mass model dominate the error budget of both measurements. Despite these limitations, the measurements demonstrate ALMA’s ability to provide constraints on BH masses in cases where the BH’s projected radius of influence is marginally resolved or the gas distribution has a central hole.

     
    more » « less
  5. Abstract We present James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) integral-field spectroscopy of the nearby merging, luminous infrared galaxy, NGC 7469. This galaxy hosts a Seyfert type-1.5 nucleus, a highly ionized outflow, and a bright, circumnuclear star-forming ring, making it an ideal target to study active galactic nucleus (AGN) feedback in the local universe. We take advantage of the high spatial/spectral resolution of JWST/MIRI to isolate the star-forming regions surrounding the central active nucleus and study the properties of the dust and warm molecular gas on ∼100 pc scales. The starburst ring exhibits prominent polycyclic aromatic hydrocarbon (PAH) emission, with grain sizes and ionization states varying by only ∼30%, and a total star formation rate of 10–30 M ⊙ yr −1 derived from fine structure and recombination emission lines. Using pure rotational lines of H 2 we detect 1.2 × 10 7 M ⊙ of warm molecular gas at a temperature higher than 200 K in the ring. All PAH bands get significantly weaker toward the central source, where larger and possibly more ionized grains dominate the emission, likely the result of the ionizing radiation and/or the fast wind emerging from the AGN. The small grains and warm molecular gas in the bright regions of the ring however display properties consistent with normal star-forming regions. These observations highlight the power of JWST to probe the inner regions of dusty, rapidly evolving galaxies for signatures of feedback and inform models that seek to explain the coevolution of supermassive black holes and their hosts. 
    more » « less