skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crossfield, Ian_J M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The chemical abundance measurements of host stars and their substellar companions provide a powerful tool to trace the formation mechanism of the planetary systems. We present a detailed high-resolution spectroscopic analysis of a young M-type star, DH Tau A, which is located in the Taurus molecular cloud belonging to the Taurus-Auriga star-forming region. This star is host to a low-mass companion, DH Tau b, and both the star and the companion are still in their accreting phase. We apply our technique to measure the abundances of carbon and oxygen using carbon- and oxygen-bearing molecules, such as CO and OH, respectively. We determine a near-solar carbon-to-oxygen abundance ratio of C/O = 0.555 ± 0.063 for the host star DH Tau A. We compare this stellar abundance ratio with that of the companion from our previous study ( C / O = 0.54 0.05 + 0.06 ), which also has a near-solar value. This confirms the chemical homogeneity in the DH Tau system, which suggests a formation scenario for the companion consistent with a direct and relatively fast gravitational collapse rather than a slow core accretion process. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  2. Abstract We present an in-depth, high-resolution spectroscopic analysis of the M dwarf K2-18, which hosts a sub-Neptune exoplanet in its habitable zone. We show our technique to accurately normalize the observed spectrum, which is crucial for a proper spectral fitting. We also introduce a new automatic, line-by-line, model-fitting code, AutoSpecFit, which performs an iterativeχ2minimization process to measure individual elemental abundances of cool dwarfs. We apply this code to the star K2-18, and measure the abundance of 10 elements: C, O, Na, Mg, Al, K, Ca, Sc, Ti, and Fe. We find these abundances to be moderately supersolar, except for Fe, with a slightly subsolar abundance. The accuracy of the inferred abundances is limited by the systematic errors due to uncertain stellar parameters. We also derive the abundance ratios associated with several planet-building elements such as Al/Mg, Ca/Mg, Fe/Mg, and (a solar-like) C/O = 0.568 ± 0.026, which can be used to constrain the chemical composition and the formation location of the exoplanet. On the other hand, the planet K2-18 b has attracted considerable interest, given the JWST measurements of its atmospheric composition. Early JWST studies reveal an unusual chemistry for the atmosphere of this planet, which is unlikely to be driven by formation in a disk of unusual composition. The comparison between the chemical abundances of K2-18 b from future JWST analyses and those of the host star can provide fundamental insights into the formation of this planetary system. 
    more » « less
  3. Abstract We present optical spectroscopy of 710 solar neighborhood stars collected over 20 years to catalog chromospheric activity and search for stellar activity cycles. The California Legacy Survey stars are amenable to exoplanet detection using precise radial velocities, and we present their CaiiH and K time series as a proxy for stellar and chromospheric activity. Using the High Resolution Echelle Spectrometer at Keck Observatory, we measured stellar flux in the cores of the CaiiH and K lines to determineS-values on the Mount Wilson scale and the log ( R HK ) metric, which is comparable across a wide range of spectral types. From the 710 stars, with 52,372 observations, 285 stars were sufficiently sampled to search for stellar activity cycles with periods of 2–25 yr, and 138 stars showed stellar cycles of varying length and amplitude.S-values can be used to mitigate stellar activity in the detection and characterization of exoplanets. We used them to probe stellar dynamos and to place the Sun's magnetic activity into context among solar neighborhood stars. Using precise stellar parameters and time-averaged activity measurements, we found tightly constrained cycle periods as a function of stellar temperature between log ( R HK ) of −4.7 and −4.9, a range of activity in which nearly every star has a periodic cycle. These observations present the largest sample of spectroscopically determined stellar activity cycles to date. 
    more » « less
  4. Abstract The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2absorption bands at different wavelengths is needed to better constrain the SO2abundance. Here we report the detection of SO2spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2of 0.5–25 ppm (1σrange), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range. 
    more » « less
  5. Abstract Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1–3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3–12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σconfidence) and evidence for optical opacity, possibly attributable to H, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’,$${\rm{M/H}}=1.0{3}_{-0.51}^{+1.11}$$ M/H = 1.0 3 0.51 + 1.11 times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators. 
    more » « less
  6. Abstract JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperatureTeqand planetary radiusRpand are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community. 
    more » « less
  7. Abstract The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1–4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5–9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6–2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement (‘metallicity’) of about 10–30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet’s terminator. 
    more » « less
  8. Abstract Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3–5and high-resolution ground-based6–8facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2(28.5σ) and H2O (21.5σ), and identify SO2as the source of absorption at 4.1 μm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10
    more » « less
  9. Abstract Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs.1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST’s Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0–4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet’s spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1–100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs.3,4,) or disequilibrium processes in the upper atmosphere (for example, refs.5,6). 
    more » « less
  10. Abstract Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models. 
    more » « less