Abstract Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2in such an atmosphere is through photochemical processes5,6. Here we show that the SO2distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7with NIRSpec PRISM (2.7σ)8and G395H (4.5σ)9. SO2is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations. 
                        more » 
                        « less   
                    
                            
                            Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H
                        
                    
    
            Abstract Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3–5and high-resolution ground-based6–8facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2(28.5σ) and H2O (21.5σ), and identify SO2as the source of absorption at 4.1 μm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1945633
- PAR ID:
- 10538036
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- NASA/ADS
- Date Published:
- Journal Name:
- Nature
- Volume:
- 614
- Issue:
- 7949
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 664 to 669
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2absorption bands at different wavelengths is needed to better constrain the SO2abundance. Here we report the detection of SO2spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2of 0.5–25 ppm (1σrange), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.more » « less
- 
            Abstract Transmission spectroscopy1–3of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations’ relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species—in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5–5.5 µm atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec’s PRISM mode9as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10–12. We robustly detect several chemical species at high significance, including Na (19σ), H2O (33σ), CO2(28σ) and CO (7σ). The non-detection of CH4, combined with a strong CO2feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2(2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST’s sensitivity to a rich diversity of exoplanet compositions and chemical processes.more » « less
- 
            Abstract The characterization of young planets (<300 Myr) is pivotal for understanding planet formation and evolution. We present the 3–5μm transmission spectrum of the 17 Myr, Jupiter-size (R∼10R⊕) planet, HIP 67522b, observed with JWST NIRSpec/G395H. To check for spot contamination, we obtain a simultaneousg-band transit with the Southern Astrophysical Research Telescope. The spectrum exhibits absorption features 30%–50% deeper than the overall depth, far larger than expected from an equivalent mature planet, and suggests that HIP 67522b’s mass is <20M⊕irrespective of cloud cover and stellar contamination. A Bayesian retrieval analysis returns a mass constraint of 13.8 ± 1.0M⊕. This challenges the previous classification of HIP 67522b as a hot Jupiter and instead, positions it as a precursor to the more common sub-Neptunes. With a density of <0.10 g cm−3, HIP 67522 b is one of the lowest-density planets known. We find strong absorption from H2O and CO2(≥7σ), a modest detection of CO (3.5σ), and weak detections of H2S and SO2(≃2σ). Comparisons with radiative-convective equilibrium models suggest supersolar atmospheric metallicities and solar-to-subsolar C/O ratios, with photochemistry further constraining the inferred atmospheric metallicity to 3 × 10 solar due to the amplitude of the SO2feature. These results point to the formation of HIP 67522b beyond the water snowline, where its envelope was polluted by icy pebbles and planetesimals. The planet is likely experiencing substantial mass loss (0.01–0.03M⊕Myr−1), sufficient for envelope destruction within a gigayear. This highlights the dramatic evolution occurring within the first 100 Myr of its existence.more » « less
- 
            Abstract Assessing the prevalence of atmospheres on rocky planets around M-dwarf stars is a top priority of exoplanet science. High-energy activity from M dwarfs can destroy the atmospheres of these planets, which could explain the lack of atmosphere detections to date. Volcanic outgassing has been proposed as a mechanism to replenish the atmospheres of tidally heated rocky planets. L 98-59 b, a sub-Earth transiting a nearby M dwarf, was recently identified as the most promising exoplanet to detect a volcanic atmosphere. We present the transmission spectrum of L 98-59 b from four transits observed with JWST NIRSpec G395H. Although the airless model provides an adequate fit to the data based on itsχ2, an SO2atmosphere is preferred by 3.6σover a flat line in terms of the Bayesian evidence. Such an atmosphere would likely be in a steady state where volcanism balances escape. If so, L 98-59 b must experience at least eight times as much volcanism and tidal heating per unit mass as Io. If volcanism is driven by runaway melting of the mantle, we predict the existence of a subsurface magma ocean in L 98-59 b extending up toRp ∼ 60%–90%. An SO2-rich volcanic atmosphere on L 98-59 b would be indicative of an oxidized mantle with an oxygen fugacity offO2 > IW + 2.7, and it would imply that L 98-59 b must have retained some of its volatile endowment despite its proximity to its star. Our findings suggest that volcanism may revive secondary atmospheres on tidally heated rocky planets around M dwarfs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    