skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crowley, Daniel E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic filoviruses that cause hemorrhagic fever in humans. Correlative data implicate bats as natural EBOV hosts, but neither a full-length genome nor an EBOV isolate has been found in any bats sampled. Here, we model filovirus infection in the Jamaican fruit bat (JFB),Artibeus jamaicensis,by inoculation with either EBOV or MARV through a combination of oral, intranasal, and subcutaneous routes. Infection with EBOV results in systemic virus replication and oral shedding of infectious virus. MARV replication is transient and does not shed. In vitro, JFB cells replicate EBOV more efficiently than MARV, and MARV infection induces innate antiviral responses that EBOV efficiently suppresses. Experiments using VSV pseudoparticles or replicating VSV expressing the EBOV or MARV glycoprotein demonstrate an advantage for EBOV entry and replication early, respectively, in JFB cells. Overall, this study describes filovirus species-specific phenotypes for both JFB and their cells. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Land-use change may drive viral spillover from bats into humans, partly through dietary shifts caused by decreased availability of native foods and increased availability of cultivated foods. We experimentally manipulated diets of Jamaican fruit bats to investigate whether diet influences viral shedding. To reflect dietary changes experienced by wild bats during periods of nutritional stress, Jamaican fruit bats were fed either a standard diet or a putative suboptimal diet, which was deprived of protein (suboptimal-sugar diet) and/or supplemented with fat (suboptimal-fat diet). Upon H18N11 influenza A-virus infection, bats fed on the suboptimal-sugar diet shed the most viral RNA for the longest period, but bats fed the suboptimal-fat diet shed the least viral RNA for the shortest period. Bats on both suboptimal diets ate more food than the standard diet, suggesting nutritional changes may alter foraging behaviour. This study serves as an initial step in understanding whether and how dietary shifts may influence viral dynamics in bats, which alters the risk of spillover to humans. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Streicker, Daniel G (Ed.)
    Bats are reservoirs of many zoonotic viruses that are fatal in humans but do not cause disease in bats. Moreover, bats generate low neutralizing antibody titers in response to experimental viral infection, although more robust antibody responses have been observed in wild-caught bats during times of food stress. Here, we compared the antibody titers and B cell receptor (BCR) diversity of Jamaican fruit bats (Artibeus jamaicensis; JFBs) and BALB/c mice generated in response to T-dependent and T-independent antigens. We then manipulated the diet of JFBs and challenged them with H18N11 influenza A-like virus or a replication incompetent Nipah virus VSV (Nipah-riVSV). Under standard housing conditions, JFBs generated a lower avidity antibody response and possessed more BCR mRNA diversity compared to BALB/c mice. However, withholding protein from JFBs improved serum neutralization in response to Nipah-riVSV and improved serum antibody titers specific to H18 but reduced BCR mRNA diversity. 
    more » « less
    Free, publicly-accessible full text available September 24, 2025
  4. Sampling reservoir hosts over time and space is critical to detect epizootics, predict spillover and design interventions. However, because sampling is logistically difficult and expensive, researchers rarely perform spatio-temporal sampling of many reservoir hosts. Bats are reservoirs of many virulent zoonotic pathogens such as filoviruses and henipaviruses, yet the highly mobile nature of these animals has limited optimal sampling of bat populations. To quantify the frequency of temporal sampling and to characterize the geographical scope of bat virus research, we here collated data on filovirus and henipavirus prevalence and seroprevalence in wild bats. We used a phylogenetically controlled meta-analysis to next assess temporal and spatial variation in bat virus detection estimates. Our analysis shows that only one in four bat virus studies report data longitudinally, that sampling efforts cluster geographically (e.g. filovirus data are available across much of Africa and Asia but are absent from Latin America and Oceania), and that sampling designs and reporting practices may affect some viral detection estimates (e.g. filovirus seroprevalence). Within the limited number of longitudinal bat virus studies, we observed high heterogeneity in viral detection estimates that in turn reflected both spatial and temporal variation. This suggests that spatio-temporal sampling designs are important to understand how zoonotic viruses are maintained and spread within and across wild bat populations, which in turn could help predict and preempt risks of zoonotic viral spillover. 
    more » « less
  5. Predicting and simplifying which pathogens may spill over from animals to humans is a major priority in infectious disease biology. Many efforts to determine which viruses are at risk of spillover use a subset of viral traits to find trait-based associations with spillover. We adapt a new method—phylofactorization—to identify not traits but lineages of viruses at risk of spilling over. Phylofactorization is used to partition the International Committee on Taxonomy of Viruses viral taxonomy based on non-human host range of viruses and whether there exists evidence the viruses have infected humans. We identify clades on a range of taxonomic levels with high or low propensities to spillover, thereby simplifying the classification of zoonotic potential of mammalian viruses. Phylofactorization by whether a virus is zoonotic yields many disjoint clades of viruses containing few to no representatives that have spilled over to humans. Phylofactorization by non-human host breadth yields several clades with significantly higher host breadth. We connect the phylogenetic factors above with life-histories of clades, revisit trait-based analyses, and illustrate how cladistic coarse-graining of zoonotic potential can refine trait-based analyses by illuminating clade-specific determinants of spillover risk. 
    more » « less