Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The CLAS12 deep-inelastic scattering experiment at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab conjugates luminosity and wide acceptance to study the 3D nucleon structure in the yet poorly explored valence region, and to perform precision measurements in hadron spectroscopy. A large area ring-imaging Cherenkov detector has been designed to achieve the required hadron identification in the momentum range from 3 GeV/c to 8 GeV/c, with the kaon rate about one order of magnitude lower than the rate of pions and protons. The adopted solution comprises aerogel radiator and composite mirrors in a novel hybrid optics design, where either direct or reflected light could be imaged in a high-packed and high segmented photon detector. The first RICH module was assembled during the second half of 2017 and installed at the beginning of January 2018, in time for the start of the experiment. The second RICH module, planned with the goal to be ready for the beginning of the operation with polarized targets, has been timely built despite the complications caused by the pandemic crisis and successfully installed in June 2022. The detector performance is here discussed with emphasis on the operation and stability during the data-taking, calibration and alignment procedures, reconstruction and pattern recognition algorithms, and particle identification.more » « less
-
The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark–gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
