- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aceves, A (2)
-
Cuevas_Maraver, J (2)
-
Germain, P (2)
-
Kevrekidis, PG (2)
-
Parker, R (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the work of Colliander et al. (2020) a minimal lattice model was constructed describing the transfer of energy to high frequencies in the defocusing nonlinear Schrödinger equation. In the present work, we present a systematic study of the coherent structures, both standing and traveling, that arise in the context of this model. We find that the nonlinearly dispersive nature of the model is responsible for standing waves in the form of discrete compactons. On the other hand, analysis of the dynamical features of the simplest nontrivial variant of the model, namely the dimer case, yields both solutions where the intensity is trapped in a single site and solutions where the intensity moves between the two sites, which suggests the possibility of moving excitations in larger lattices. Such excitations are also suggested by the dynamical evolution associated with modulational instability. Our numerical computations confirm this expectation, and we systematically construct such traveling states as exact solutions in lattices of varying size, as well as explore their stability. A remarkable feature of these traveling lattice waves is that they are of ‘‘antidark’’ type, i.e., they are mounted on top of a non-vanishing background. These studies shed light on the existence, stability and dynamics of such standing and traveling states in 1 + 1 dimensions, and pave the way for exploration of corresponding configurations in higher dimensions.more » « less
-
Parker, R; Germain, P; Cuevas_Maraver, J; Aceves, A; Kevrekidis, PG (, Physica D Nonlinear phenomena)In the work of Colliander et al. (2020) a minimal lattice model was constructed describing the transfer of energy to high frequencies in the defocusing nonlinear Schrödinger equation. In the present work, we present a systematic study of the coherent structures, both standing and traveling, that arise in the context of this model. We find that the nonlinearly dispersive nature of the model is responsible for standing waves in the form of discrete compactons. On the other hand, analysis of the dynamical features of the simplest nontrivial variant of the model, namely the dimer case, yields both solutions where the intensity is trapped in a single site and solutions where the intensity moves between the two sites, which suggests the possibility of moving excitations in larger lattices. Such excitations are also suggested by the dynamical evolution associated with modulational instability. Our numerical computations confirm this expectation, and we systematically construct such traveling states as exact solutions in lattices of varying size, as well as explore their stability. A remarkable feature of these traveling lattice waves is that they are of ‘‘antidark’’ type, i.e., they are mounted on top of a non-vanishing background. These studies shed light on the existence, stability and dynamics of such standing and traveling states in 1 + 1 dimensions, and pave the way for exploration of corresponding configurations in higher dimensions.more » « less
An official website of the United States government

Full Text Available