skip to main content


Search for: All records

Creators/Authors contains: "Cui, Chaohan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acousto-optic modulation in piezoelectric materials offers the efficient method to bridge electrical and optical signals. It is widely used to control optical frequencies and intensities in modern optical systems includingQ-switch lasers, ion traps, and optical tweezers. It is also critical for emerging applications such as quantum photonics and non-reciprocal optics. Acousto-optic devices have recently been demonstrated with promising performance on integrated platforms. However, the conversion efficiency of optical signals remains low in these integrated devices. This is attributed to the significant challenge in realizing large mode overlap, long interaction length, and high power robustness at the same time. Here, we develop acousto-optic devices with gallium nitride on a sapphire substrate. The unique capability to confine both optical and acoustic fields in sub-wavelength scales without suspended structures allows efficient acousto-optic interactions over long distances under high driving power. This leads to the complete optical conversion with integrated acousto-optic modulators. With the unidirectional phase matching, we also demonstrate the non-reciprocal propagation of optical fields with isolation ratios above 10 dB. This work provides a robust and efficient acousto-optic platform, opening new opportunities for optical signal processing, quantum transduction, and non-magnetic optical isolation.

     
    more » « less
  2. Abstract

    The frequency degree of freedom of optical photons has been recently explored for efficient quantum information processing. Significant reduction in hardware resources and enhancement of quantum functions can be expected by leveraging the large number of frequency modes. Here, we develope an integrated photonic platform for the generation and parallel processing of quantum frequency combs (QFCs). Cavity-enhanced parametric down-conversion with Sagnac configuration is implemented to generate QFCs with identical spectral distributions. On-chip quantum interference of different frequency modes is simultaneously realized with the same photonic circuit. High interference visibility is maintained across all frequency modes with the identical circuit setting. This enables the on-chip reconfiguration of QFCs. By deterministically separating QFCs without spectral filtering, we further demonstrate high-dimensional Hong-Ou-Mandel effect. Our work provides the critical step for the efficient implementation of quantum information processing with integrated photonics using the frequency degree of freedom.

     
    more » « less
  3. Abstract

    Quantum receivers aim to effectively navigate the vast quantum-state space to endow quantum information processing capabilities unmatched by classical receivers. To date, only a handful of quantum receivers have been constructed to tackle the problem of discriminating coherent states. Quantum receivers designed by analytical approaches, however, are incapable of effectively adapting to diverse environmental conditions, resulting in their quickly diminishing performance as the operational complexities increase. Here, we present a general architecture, dubbed the quantum receiver enhanced by adaptive learning, to adapt quantum receiver structures to diverse operational conditions. The adaptively learned quantum receiver is experimentally implemented in a hardware platform with record-high efficiency. Combining the architecture and the experimental advances, the error rate is reduced up to 40% over the standard quantum limit in two coherent-state encoding schemes.

     
    more » « less
  4. This folder contains original data, data processing code, and demo code for the paper entitled "Quantum receiver enhanced by adaptive learning" published in Light: Science & Applications, DOI: 10.1038/s41377-022-01039-5. Please contact chaohancui@arizona.edu if you have questions or other concerns. 

     
    more » « less
  5. Making analogy with atomic physics is a powerful tool for photonic technology, witnessed by the recent development in topological photonics and non-Hermitian photonics based on parity–time symmetry. The Mollow triplet is a prominent atomic effect with both fundamental and technological importance. Here we demonstrate the analog of the Mollow triplet with quantum photonic systems. Photonic entanglement is generated with spontaneous nonlinear processes in dressed photonic modes, which are introduced through coherent multimode coupling. We further demonstrate the possibility of the photonic system to realize different configurations of dressed states, leading to modification of the Mollow triplet. Our work would enable the investigation of complex atomic processes and the realization of unique quantum functionalities based on photonic systems.

     
    more » « less
  6. Second-order optical nonlinearity is widely used for both classical and quantum photonic applications. Due to material dispersion and phase matching requirements, the polarization of optical fields is pre-defined during the fabrication. Only one type of phase matching condition is normally satisfied, and this limits the device flexibility. Here, we demonstrate that phase matching for both type-I and type-II second-order optical nonlinearity can be realized simultaneously in the same waveguide fabricated from thin-film lithium niobate. This is achieved by engineering the geometry dispersion to compensate for the material dispersion and birefringence. The simultaneous realization of both phase matching conditions is verified by the polarization dependence of second-harmonic generation. Correlated photons are also generated through parametric down conversion from the same device. This work provides a novel approach to realize versatile photonic functions with flexible devices.

     
    more » « less
  7. null (Ed.)