Abstract Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to applying arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices. However, material platforms for high-speed telecom integrated photonics lack transparency at the short wavelengths required by leading atomic systems. Here, we propose and implement a scalable and reconfigurable photonic control architecture using integrated, visible-light modulators based on thin-film lithium niobate. We combine this system with techniques in free-space optics and holography to demonstrate multi-channel, gigahertz-rate visible beamshaping. When applied to silicon-vacancy artificial atoms, our system enables the spatial and spectral addressing of a dynamically-selectable set of these stochastically-positioned point emitters.
more »
« less
Photonic analog of Mollow triplet with on-chip photon-pair generation in dressed modes
Making analogy with atomic physics is a powerful tool for photonic technology, witnessed by the recent development in topological photonics and non-Hermitian photonics based on parity–time symmetry. The Mollow triplet is a prominent atomic effect with both fundamental and technological importance. Here we demonstrate the analog of the Mollow triplet with quantum photonic systems. Photonic entanglement is generated with spontaneous nonlinear processes in dressed photonic modes, which are introduced through coherent multimode coupling. We further demonstrate the possibility of the photonic system to realize different configurations of dressed states, leading to modification of the Mollow triplet. Our work would enable the investigation of complex atomic processes and the realization of unique quantum functionalities based on photonic systems.
more »
« less
- PAR ID:
- 10308192
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 19
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 4753
- Size(s):
- Article No. 4753
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.more » « less
-
Abstract Silicon is the ideal material for building electronic and photonic circuits at scale. Integrated photonic quantum technologies in silicon offer a promising path to scaling by leveraging advanced semiconductor manufacturing and integration capabilities. However, the lack of deterministic quantum light sources and strong photon-photon interactions in silicon poses a challenge to scalability. In this work, we demonstrate an indistinguishable photon source in silicon photonics based on an artificial atom. We show that a G center in a silicon waveguide can generate high-purity telecom-band single photons. We perform high-resolution spectroscopy and time-delayed two-photon interference to demonstrate the indistinguishability of single photons emitted from a G center in a silicon waveguide. Our results show that artificial atoms in silicon photonics can source single photons suitable for photonic quantum networks and processors.more » « less
-
Abstract Controlling large-scale many-body quantum systems at the level of single photons and single atomic systems is a central goal in quantum information science and technology. Intensive research and development has propelled foundry-based silicon-on-insulator photonic integrated circuits to a leading platform for large-scale optical control with individual mode programmability. However, integrating atomic quantum systems with single-emitter tunability remains an open challenge. Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters into advanced silicon-on-insulator photonic integrated circuits fabricated in a 300 mm foundry process. With this platform, we achieve single-photon emission via resonance fluorescence and scalable emission wavelength tunability. The combined control of photonic and quantum systems opens the door to programmable quantum information processors manufactured in leading semiconductor foundries.more » « less
-
Many uses of lasers place the highest importance on access to specific wavelength bands. For example, mobilizing optical-atomic clocks for a leap in sensing requires compact lasers at frequencies spread across the visible and near-infrared. Integrated photonics enables high-performance, scalable laser platforms. However, customizing laser-gain media to support wholly new bands is challenging and often prohibitively mismatched in scalability to early quantum-based sensing and information systems. Here, we demonstrate a tantalum pentoxide microresonator optical-parametric oscillator (OPO) that converts a pump laser to an output wave within a frequency span exceeding an octave. We control phase matching for oscillation by nanopatterning the microresonator to open a photonic-crystal bandgap on the mode of the pump laser. The photonic crystal splits only the pump mode and preserves the broader mode structure of the resonator, thus affording a single parameter to control output waves across the octave span using a nearly fixed frequency pump laser. We also demonstrate tuning the oscillator in free-spectral-range steps, more finely with temperature, and minimal additive frequency noise of the laser-conversion process. Our work shows that nanophotonic structures offer control of laser conversion in microresonators, bridging phase-matching of nonlinear optics and application requirements for laser designs.more » « less
An official website of the United States government
