skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Curtius, Joachim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Exposure to anthropogenic atmospheric aerosol is a major health issue, causing several million deaths per year worldwide. The oxidation of aromatic hydrocarbons from traffic and wood combustion is an important anthropogenic source of low-volatility species in secondary organic aerosol, especially in heavily polluted environments. It is not yet established whether the formation of anthropogenic secondary organic aerosol involves mainly rapid autoxidation, slower sequential oxidation steps or a combination of the two. Here we reproduced a typical urban haze in the ‘Cosmics Leaving Outdoor Droplets’ chamber at the European Organization for Nuclear Research and observed the dynamics of aromatic oxidation products during secondary organic aerosol growth on a molecular level to determine mechanisms underlying their production and removal. We demonstrate that sequential oxidation is required for substantial secondary organic aerosol formation. Second-generation oxidation decreases the products’ saturation vapour pressure by several orders of magnitude and increases the aromatic secondary organic aerosol yields from a few percent to a few tens of percent at typical atmospheric concentrations. Through regional modelling, we show that more than 70% of the exposure to anthropogenic organic aerosol in Europe arises from second-generation oxidation. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract. Oxygenated organic molecules (OOMs) play an important role in the formation of atmospheric aerosols. Due to various analytical challenges with respect to measuring organic vapors, uncertainties remain regarding the formation and fate of OOMs. The chemical ionization Orbitrap (CI-Orbitrap) mass spectrometer has recently been shown to be a powerful technique that is able to accurately identify gaseous organic compounds due to its greater mass resolution. Here, we present the ammonium-ion-based CI-Orbitrap (NH4+-Orbitrap) as a technique capable of measuring a wide range of gaseous OOMs. The performance of the NH4+-Orbitrap is compared with that of state-of-the-art mass spectrometers, including a nitrate-ion-based chemical ionization atmospheric pressure interface coupled to a time-of-flight mass spectrometer (NO3--LTOF), a new generation of proton transfer reaction-TOF mass spectrometer (PTR3-TOF), and an iodide-based CI-TOF mass spectrometer equipped with a Filter Inlet for Gases and AEROsols (I−-CIMS). The instruments were deployed simultaneously in the Cosmic Leaving OUtdoors Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN) during the CLOUD14 campaign in 2019. Products generated from α-pinene ozonolysis under various experimental conditions were simultaneously measured by the mass spectrometers. The NH4+-Orbitrap was able to identify the widest range of OOMs (i.e., O ≥ 2), from less-oxidized species to highly oxygenated organic molecules (HOMs). Excellent agreement was found between the NH4+-Orbitrap and the NO3--LTOF with respect to characterizing HOMs and with the PTR3-TOF for the less-oxidized monomeric species. OOM concentrations measured by NH4+-Orbitrap were estimated using calibration factors derived from the OOMs with high time-series correlations during the side-by-side measurements. As with the other mass spectrometry techniques used during this campaign, the detection sensitivity of the NH4+-Orbitrap to OOMs is greatly affected by relative humidity, which may be related to changes in ionization efficiency and/or multiphase chemistry. Overall, this study shows that NH4+-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds. As a result, it is now possible to cover the entire range of compounds, which can lead to a better understanding of the oxidation processes. 
    more » « less
  4. Abstract Aircraft observations have revealed ubiquitous new particle formation in the tropical upper troposphere over the Amazon1,2and the Atlantic and Pacific oceans3,4. Although the vapours involved remain unknown, recent satellite observations have revealed surprisingly high night-time isoprene mixing ratios of up to 1 part per billion by volume (ppbv) in the tropical upper troposphere5. Here, in experiments performed with the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we report new particle formation initiated by the reaction of hydroxyl radicals with isoprene at upper-tropospheric temperatures of −30 °C and −50 °C. We find that isoprene-oxygenated organic molecules (IP-OOM) nucleate at concentrations found in the upper troposphere, without requiring any more vapours. Moreover, the nucleation rates are enhanced 100-fold by extremely low concentrations of sulfuric acid or iodine oxoacids above 105 cm−3, reaching rates around 30 cm−3 s−1at acid concentrations of 106 cm−3. Our measurements show that nucleation involves sequential addition of IP-OOM, together with zero or one acid molecule in the embryonic molecular clusters. IP-OOM also drive rapid particle growth at 3–60 nm h−1. We find that rapid nucleation and growth rates persist in the presence of NOxat upper-tropospheric concentrations from lightning. Our laboratory measurements show that isoprene emitted by rainforests may drive rapid new particle formation in extensive regions of the tropical upper troposphere1,2, resulting in tens of thousands of particles per cubic centimetre. 
    more » « less
    Free, publicly-accessible full text available December 5, 2025
  5. Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 oC to −10 oC. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 107 cm^sup>−3, a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 oC), iodine oxides (I2O4 and I2O5) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere. 
    more » « less
    Free, publicly-accessible full text available May 16, 2025
  6. Abstract The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO 2 ) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO 2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO 2 -NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer. 
    more » « less
  7. Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of β-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei. 
    more » « less
  8. The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3is generally low, and H2SO4is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4and HIOxduring atmospheric particle nucleation. We found that HIOxgreatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3strongly binds with H2SO4in charged clusters so they drive particle nucleation synergistically. Second, HIO2substitutes for NH3, forming strongly bound H2SO4-HIO2acid-base pairs in molecular clusters. Global observations imply that HIOxis enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions. 
    more » « less