skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "D’Agati, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thin film through-thickness stress gradients produce out-of-plane bending in released microelectromechanical systems (MEMS) structures. We study the stress and stress gradient of Al0.68Sc0.32N thin films deposited directly on Si. We show that Al0.68Sc0.32N cantilever structures realized in films with low average film stress have significant out-of-plane bending when the Al1−xScxN material is deposited under constant sputtering conditions. We demonstrate a method where the total process gas flow is varied during the deposition to compensate for the native through-thickness stress gradient in sputtered Al1−xScxN thin films. This method is utilized to reduce the out-of-plane bending of 200 µm long, 500 nm thick Al0.68Sc0.32N MEMS cantilevers from greater than 128 µm to less than 3 µm. 
    more » « less