skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "D'Amato, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This is an updated version of the original TREEMAP 2016 raster and the associated files for CONUS. Additions to the TREEMAP 2016 raster attribute table are the SDI, SDImax and RD estimates. 
    more » « less
  2. Abstract Cold‐air pooling is an important topoclimatic process that creates temperature inversions with the coldest air at the lowest elevations. Incomplete understanding of sub‐canopy spatiotemporal cold‐air pooling dynamics and associated ecological impacts hinders predictions and conservation actions related to climate change and cold‐dependent species and functions. To determine if and how cold‐air pooling influences forest composition, we characterized the frequency, strength, and temporal dynamics of cold‐air pooling in the sub‐canopy at local to regional scales in New England, USA. We established a network of 48 plots along elevational transects and continuously measured sub‐canopy air temperatures for 6–10 months (depending on site). We then estimated overstory and understory community temperature preferences by surveying tree composition in each plot and combining these data with known species temperature preferences. We found that cold‐air pooling was frequent (19–43% seasonal occurrences) and that sites with the most frequent inversions displayed inverted forest composition patterns across slopes with more cold‐adapted species, namely conifers, at low instead of high elevations. We also observed both local and regional variability in cold‐air pooling dynamics, revealing that while cold‐air pooling is common, it is also spatially complex. Our study, which uniquely focused on broad spatial and temporal scales, has revealed some rarely reported cold‐air pooling dynamics. For instance, we discovered frequent and strong temperature inversions that occurred across seasons and in some locations were most frequent during the daytime, likely affecting forest composition. Together, our results show that cold‐air pooling is a fundamental ecological process that requires integration into modeling efforts predicting future forest vegetation patterns under climate change, as well as greater consideration for conservation strategies identifying potential climate refugia for cold‐adapted species. 
    more » « less
  3. Climate change is reducing snowpack across temperate regions with negative consequences for human and natural systems. Because forest canopies create microclimates that preserve snowpack, managing forests to support snow refugia—defined here as areas that remain relatively buffered from contemporary climate change over time that sustain snow quality, quantity, and/or timing appropriate to the landscape—could reduce climate change impacts on snow cover, sustaining the benefits of snow. We review the current understanding of how forest canopies affect snow, finding that while closed‐conifer forests and snow interactions have been extensively studied in western North America, there are knowledge gaps for deciduous and mixed forests with dormant season leaf loss. We propose that there is an optimal, intermediate zone along a gradient of dormant season canopy cover (DSCC; the proportion of the ground area covered by the canopy during the dormant season), where peak snowpack depth and the potential for snow refugia will be greatest because the canopy‐mediated effects of snowpack sheltering (which can preserve snowpack) outweigh those of snowfall interception (which can limit snowpack). As an initial test of our hypothesis, we leveraged snowpack measurements in the northeastern United States spanning the DSCC gradient (low, <25% DSCC; medium, 25%–50% DSCC; and high, >50% DSCC), including from 2 sites in Old Town, Maine; 12 sites in Acadia National Park, Maine; and 30 sites in the northern White Mountains of New Hampshire. Medium DSCC forests (typically mature mixed coniferous–deciduous forests) exhibited the deepest peak snowpacks, likely due to reduced snowfall interception compared to high DSCC forests and reduced snowpack loss compared to low DSCC forests. Many snow accumulation or snowpack studies focus on the contrast between coniferous and open sites, but our results indicate a need for enhanced focus on mixed canopy sites that could serve as snow refugia. Measurements of snowpack depth and timing across a wider range of forest canopies would advance understanding of canopy–snow interactions, expand the monitoring of changing winters, and support management of forests and snow‐dependent species in the face of climate change. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Abstract Alterations in global climate via extreme precipitation will have broadscale implications on ecosystem functioning. The increased frequency of drought, coupled with heavy, episodic rainfall are likely to generate impacts on biotic and abiotic processes across aquatic and terrestrial ecosystems. Despite the demonstrated shifts in global precipitation, less is known how extreme precipitation interacts with biophysical factors to control future demographic processes, especially those sensitive to climate extremes such as organismal recruitment and survival. We utilized a field‐based precipitation manipulation experiment in 0.1 ha forest canopy openings to test future climate scenarios characterized by extreme precipitation on temperate tree seedling survival. The effects of planting seedbeds (undisturbed leaf litter/organic material vs. scarified, exposed mineral soils), seedling ontogeny, species, and functional traits were examined against four statistically defined precipitation scenarios. Results indicated that seedlings grown within precipitation treatments characterized by heavy, episodic rainfall preceded by prolonged drying responded similarly to drought treatments lacking episodic inputs. Moreover, among all treatment conditions tested, scarified seedbeds most strongly affected seedling survivorship (odds ratio 6.9). Compared with any precipitation treatment, the effect size (predicted probabilities) of the seedbed was more than twice as important in controlling seedling survivorship. However, the interaction between precipitation and seedbed resulted in a 27.9% improvement in survivorship for moisture‐sensitive species. Seedling sensitivity to moisture was variable among species, and most closely linked with functional traits such as seed mass. For instance, under dry moisture regimes, survivorship increased linearly with seed mass (log transformed; adjustedR2 = 0.72,p < 0.001), yet no relationship was apparent under wet moisture regimes. Although precipitation influenced survival, extreme rainfall events were not enough to offset moisture deficits nor provide a rescue effect under drought conditions. The relationships reported here highlight the importance of plant seedbeds and species (e.g., functional traits) as edaphic and biotic controls that modify the influence of extreme future precipitation on seedling survival in temperate forests. Finally, we demonstrated the biophysical factors that were most influential to early forest development and that may override the negative effects of increasingly variable precipitation. This work contributes to refinements of species distribution models and can inform reforestation strategies intended to maintain biodiversity and ecosystem function under increasing climate extremes. 
    more » « less