skip to main content

Search for: All records

Creators/Authors contains: "Dagon, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Stratospheric aerosol injection (SAI) would potentially be effective in limiting global warming and preserving large‐scale temperature patterns; however, there are still gaps in understanding the impact of SAI on wildfire risk. In this study, extreme fire weather is assessed in an Earth system model experiment that deploys SAI beginning in 2035, targeting a global temperature increase of 1.5°C above pre‐industrial levels under a moderate warming scenario. After SAI deployment, increases in extreme fire weather event frequency from climate change are dampened over much of the globe, including the Mediterranean, northeast Brazil, and eastern Europe. However, SAI has little impact over the western Amazon and northern Australia and causes larger increases in extreme fire weather frequency in west central Africa relative to the moderate emissions scenario. Variations in the impacts of warming and SAI on moisture conditions on different time scales determine the spatiotemporal differences in extreme fire weather frequency changes, and are plausibly linked to changes in synoptic‐scale circulation. This study highlights that regional and spatial heterogeneities of SAI climate effects simulated in a model are amplified when assessing wildfire risk, and that these differences must be accounted for when quantifying the possible benefit of SAI.

    more » « less
  2. Abstract

    Extreme precipitation events, including those associated with weather fronts, have wide‐ranging impacts across the world. Here we use a deep learning algorithm to identify weather fronts in high resolution Community Earth System Model (CESM) simulations over the contiguous United States (CONUS), and evaluate the results using observational and reanalysis products. We further compare results between CESM simulations using present‐day and future climate forcing, to study how these features might change with climate change. We find that detected front frequencies in CESM have seasonally varying spatial patterns and responses to climate change and are found to be associated with modeled changes in large scale circulation such as the jet stream. We also associate the detected fronts with precipitation and find that total and extreme frontal precipitation mostly decreases with climate change, with some seasonal and regional differences. Decreases in Northern Hemisphere summer frontal precipitation are largely driven by changes in the frequency of different front types, especially cold and stationary fronts. On the other hand, Northern Hemisphere winter exhibits some regional increases in frontal precipitation that are largely driven by changes in frontal precipitation intensity. While CONUS mean and extreme precipitation generally increase during all seasons in these climate change simulations, the likelihood of frontal extreme precipitation decreases, demonstrating that extreme precipitation has seasonally varying sources and mechanisms that will continue to evolve with climate change.

    more » « less
  3. Abstract

    The Arctic hydrological system is an interconnected system that is experiencing rapid change. It is comprised of permafrost, snow, glacier, frozen soils, and inland river systems. In this study, we aim to lower the barrier of using complex land models in regional applications by developing a generalizable optimization methodology and workflow for the Community Terrestrial Systems Model (CTSM), to move them toward a more Actionable Science paradigm. Further end‐user engagement is required to make science such as this “fully actionable.” We applied CTSM across Alaska and the Yukon River Basin at 4‐km spatial resolution. We highlighted several potentially useful high‐resolution CTSM configuration changes. Additionally, we performed a multi‐objective optimization using snow and river flow metrics within an adaptive surrogate‐based model optimization scheme. Four representative river basins across our study domain were selected for optimization based on observed streamflow and snow water equivalent observations at 10 SNOTEL sites. Fourteen sensitive parameters were identified for optimization with half of them not directly related to hydrology or snow processes. Across fifteen out‐of‐sample river basins, 13 had improved flow simulations after optimization and the mean Kling‐Gupta Efficiency of daily flow increased from 0.43 to 0.63 in a 30‐year evaluation. In addition, we adapted the Shapley Decomposition to disentangle each parameter's contribution to streamflow performance changes, with the seven non‐hydrological parameters providing a non‐negligible contribution to performance gains. The snow simulation had limited improvement, likely because snow simulation is influenced more by meteorological forcing than model parameter choices.

    more » « less
  4. null (Ed.)
    Abstract. Land models are essential tools for understanding and predicting terrestrial processes and climate–carbon feedbacks in the Earth system, but uncertainties in their future projections are poorly understood. Improvements in physical process realism and the representation of human influence arguably make models more comparable to reality but also increase the degrees of freedom in model configuration, leading to increased parametric uncertainty in projections. In this work we design and implement a machine learning approach to globally calibrate a subset of the parameters of the Community Land Model, version 5 (CLM5) to observations of carbon and water fluxes. We focus on parameters controlling biophysical features such as surface energy balance, hydrology, and carbon uptake. We first use parameter sensitivity simulations and a combination of objective metrics including ranked global mean sensitivity to multiple output variables and non-overlapping spatial pattern responses between parameters to narrow the parameter space and determine a subset of important CLM5 biophysical parameters for further analysis. Using a perturbed parameter ensemble, we then train a series of artificial feed-forward neural networks to emulate CLM5 output given parameter values as input. We use annual mean globally aggregated spatial variability in carbon and water fluxes as our emulation and calibration targets. Validation and out-of-sample tests are used to assess the predictive skill of the networks, and we utilize permutation feature importance and partial dependence methods to better interpret the results. The trained networks are then used to estimate global optimal parameter values with greater computational efficiency than achieved by hand tuning efforts and increased spatial scale relative to previous studies optimizing at a single site. By developing this methodology, our framework can help quantify the contribution of parameter uncertainty to overall uncertainty in land model projections. 
    more » « less