skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Land Processes Can Substantially Impact the Mean Climate State
Abstract Terrestrial processes influence the atmosphere by controlling land‐to‐atmosphere fluxes of energy, water, and carbon. Prior research has demonstrated that parameter uncertainty drives uncertainty in land surface fluxes. However, the influence of land process uncertainty on the climate system remains underexplored. Here, we quantify how assumptions about land processes impact climate using a perturbed parameter ensemble for 18 land parameters in the Community Earth System Model version 2 under preindustrial conditions. We find that an observationally‐informed range of land parameters generate biogeophysical feedbacks that significantly influence the mean climate state, largely by modifying evapotranspiration. Global mean land surface temperature ranges by 2.2°C across our ensemble (σ = 0.5°C) and precipitation changes were significant and spatially variable. Our analysis demonstrates that the impacts of land parameter uncertainty on surface fluxes propagate to the entire Earth system, and provides insights into where and how land process uncertainty influences climate.  more » « less
Award ID(s):
2019625
PAR ID:
10576482
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Land models are essential tools for understanding and predicting terrestrial processes and climate–carbon feedbacks in the Earth system, but uncertainties in their future projections are poorly understood. Improvements in physical process realism and the representation of human influence arguably make models more comparable to reality but also increase the degrees of freedom in model configuration, leading to increased parametric uncertainty in projections. In this work we design and implement a machine learning approach to globally calibrate a subset of the parameters of the Community Land Model, version 5 (CLM5) to observations of carbon and water fluxes. We focus on parameters controlling biophysical features such as surface energy balance, hydrology, and carbon uptake. We first use parameter sensitivity simulations and a combination of objective metrics including ranked global mean sensitivity to multiple output variables and non-overlapping spatial pattern responses between parameters to narrow the parameter space and determine a subset of important CLM5 biophysical parameters for further analysis. Using a perturbed parameter ensemble, we then train a series of artificial feed-forward neural networks to emulate CLM5 output given parameter values as input. We use annual mean globally aggregated spatial variability in carbon and water fluxes as our emulation and calibration targets. Validation and out-of-sample tests are used to assess the predictive skill of the networks, and we utilize permutation feature importance and partial dependence methods to better interpret the results. The trained networks are then used to estimate global optimal parameter values with greater computational efficiency than achieved by hand tuning efforts and increased spatial scale relative to previous studies optimizing at a single site. By developing this methodology, our framework can help quantify the contribution of parameter uncertainty to overall uncertainty in land model projections. 
    more » « less
  2. Abstract Feedbacks between atmospheric processes like precipitation and land surface fluxes including evapotranspiration are difficult to observe, but critical for understanding the role of the land surface in the Earth System. To quantify global surface-atmosphere feedbacks we use results of a process network (PN) applied to 251 eddy covariance sites from the LaThuile database to train a neural network across the global terrestrial surface. There is a strong land–atmosphere coupling between latent (LE) and sensible heat flux (H) and precipitation (P) during summer months in temperate regions, and betweenHandPduring winter, whereas tropical rainforests show little coupling seasonality. Savanna, shrubland, and other semi-arid ecosystems exhibit strong responses in their coupling behavior based on water availability. Feedback couplings from surface fluxes toPpeaks at aridity (P/potential evapotranspiration ETp) values near unity, whereas coupling with respect to clouds, inferred from reduced global radiation, increases asP/ETpapproaches zero. Spatial patterns in feedback coupling strength are related to climatic zone and biome type. Information flow statistics highlight hotspots of (1) persistent land–atmosphere coupling in sub-Saharan Africa, (2) boreal summer coupling in the central and southwestern US, Brazil, and the Congo basin and (3) in the southern Andes, South Africa and Australia during austral summer. Our data-driven approach to quantifying land atmosphere coupling strength that leverages the global FLUXNET database and information flow statistics provides a basis for verification of feedback interactions in general circulation models and for predicting locations where land cover change will feedback to climate or weather. 
    more » « less
  3. Abstract Crucial to the assessment of future water security is how the land model component of Earth System Models partition precipitation into evapotranspiration and runoff, and the sensitivity of this partitioning to climate. This sensitivity is not explicitly constrained in land models nor the model parameters important for this sensitivity identified. Here, we seek to understand parametric controls on runoff sensitivity to precipitation and temperature in a state‐of‐the‐science land model, the Community Land Model version 5 (CLM5). Process‐parameter interactions underlying these two climate sensitivities are investigated using the sophisticated variance‐based sensitivity analysis. This analysis focuses on three snow‐dominated basins in the Colorado River headwaters region, a prominent exemplar where land models display a wide disparity in runoff sensitivities. Runoff sensitivities are dominated by indirect or interaction effects between a few parameters of subsurface, snow, and plant processes. A focus on only one kind of parameters would therefore limit the ability to constrain the others. Surface runoff exhibits strong sensitivity to parameters of snow and subsurface processes. Constraining snow simulations would require explicit representation of the spatial variability across large elevation gradients. Subsurface runoff and soil evaporation exhibit very similar sensitivities. Model calibration against the subsurface runoff flux would therefore constrain soil evaporation. The push toward a mechanistic treatment of processes in CLM5 have dampened the sensitivity of parameters compared to earlier model versions. A focus on the sensitive parameters and processes identified here can help characterize and reduce uncertainty in water resource sensitivity to climate change. 
    more » « less
  4. The parameterization of subgrid‐scale processes such as boundary layer (PBL) turbulence introduces uncertainty in Earth System Model (ESM) results. This uncertainty can contribute to or exacerbate existing biases in representing key physical processes. This study analyzes the influence of tunable parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBBX) scheme. CLUBB is the operational PBL parameterization in the Community Atmosphere Model version 6 (CAM6), the atmospheric component of the Community ESM version 2 (CESM2). We perform the Morris one‐at‐a‐time (MOAT) parameter sensitivity analysis using short‐term (3‐day), initialized hindcasts of CAM6‐CLUBBX with 24 unique initial conditions. Several input parameters modulating vertical momentum flux appear most influential for various regionally‐averaged quantities, namely surface stress and shortwave cloud forcing (SWCF). These parameter sensitivities have a spatial dependence, with parameters governing momentum flux most influential in regions of high vertical wind shear (e.g., the mid‐latitude storm tracks). We next evaluate several experimental 20‐year simulations of CAM6‐CLUBBX with targeted parameter perturbations. We find that parameter perturbations produce similar physical mechanisms in both short‐term and long‐term simulations, but these physical responses can be muted due to nonlinear feedbacks manifesting over time scales longer than 3 days, thus causing differences in how output metrics respond in the long‐term simulations. Analysis of turbulent fluxes in CLUBBX indicates that the influential parameters affect vertical fluxes of heat, moisture, and momentum, providing physical pathways for the sensitivities identified in this study. 
    more » « less
  5. Abstract Soil moisture and evapotranspiration (ET) are important components of boreal forest hydrology that affect ecological processes and land‐atmosphere feedbacks. Future trends in soil moisture in particular are uncertain. Therefore, accurate modeling of these dynamics and understanding of concomitant sources of uncertainty are critical. Here, we conduct a global sensitivity analysis, Monte Carlo parameterization, and analysis of parameter uncertainty and its contribution to future soil moisture and ET uncertainty using a physically based ecohydrologic model in multiple boreal forest types. Soil and plant hydraulic parameters and LAI have the largest effects on simulated summer soil moisture at two contrasting sites. In future scenario simulations, the selection of parameters and global climate model (GCM) choice between two GCMs influence projected changes in soil moisture and ET about as much as the projected effects of climate change in the less sensitive GCM with a late‐century, high‐emissions scenario, though the relative effects of parameters, GCM, and climate vary among hydrologic variables and study sites. Saturated volumetric water content and sensitivity of stomatal conductance to vapor pressure deficit have the most statistically significant effects on change in ET and soil moisture, though there is considerable variability between sites and GCMs. The results of this study provide estimates of: (a) parameter importance and statistical significance for soil moisture modeling, (b) parameter values for physically based soil‐vegetation‐atmosphere transfer models in multiple boreal forest types, and (c) the contributions of uncertainty in these parameters to soil moisture and ET uncertainty in future climates. 
    more » « less