Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Discher, Dennis (Ed.)Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.more » « less
-
Abstract The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.more » « less
-
Single-walled carbon nanotubes (SWCNTs) are increasingly being investigated for biomedical imaging, sensing, and drug delivery. Cell types, cellular entry mechanisms, and SWCNT lengths dictate SWCNT uptake, subsequent intracellular trafficking, and retention. Specialized immune cells known as macrophages are capable of two size-dependent entry mechanisms: endocytosis of small particles (diameter < 200 nm) and phagocytosis of large particles (diameter > 500 nm). In comparison, fibroblasts uptake particles predominantly through endocytosis. We report dependence of cellular processing including uptake, subcellular distribution, and retention on the SWCNT length and immune cell-specific processes. We chose SWCNTs of three different average lengths: 50 nm (ultrashort, US), 150 nm (short) and 500 nm (long) to encompass two different entry mechanisms, and noncovalently dispersed them in water, cell culture media, and phosphate buffer (pH 5) with bovine serum albumin, which maintains the SWCNT optical properties and promotes their cellular uptake. Using confocal Raman imaging and spectroscopy, we quantified cellular uptake, tracked the intracellular dispersion state ( i.e. , individualized versus bundled), and monitored recovery as a function of SWCNT lengths in macrophages. Cellular uptake of SWCNTs increases with decreasing SWCNT length. Interestingly, short-SWCNTs become highly bundled in concentrated phase dense regions of macrophages after uptake and most of these SWCNTs are retained for at least 24 h. On the other hand, both US- and long-SWCNTs remain largely individualized after uptake into macrophages and are lost over a similar elapsed time. After uptake into fibroblasts, however, short-SWCNTs remain individualized and are exocytosed over 24 h. We hypothesize that aggregation of SWCNTs within macrophages but not fibroblasts may facilitate the retention of SWCNTs within the former cell type. Furthermore, the differential length-dependent cellular processing suggests potential applications of macrophages as live cell carriers of SWCNTs into tumors and regions of inflammation for therapy and imaging.more » « less
-
The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1’s outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina—one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.more » « less
An official website of the United States government
