Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Wireless communication devices must be protected from malicious threats, including active jamming attacks, due to the widespread use of wireless systems throughout our every‐day lives. Jamming mitigation techniques are predominately evaluated through simulation or with hardware for very specific jamming conditions. In this paper, an experimental software defined radio‐based RF jamming mitigation platform which performs online jammer classification and leverages reconfigurable beam‐steering antennas at the physical layer is introduced. A ray‐tracing emulation system is presented and validated to enable hardware‐in‐the‐loop jamming experiments of complex outdoor and mobile site‐specific scenarios. Random forests classifiers are trained based on over‐the‐air collected data and integrated into the platform. The mitigation system is evaluated for both over‐the‐air and ray‐tracing emulated environments. The experimental results highlight the benefit of using the jamming mitigation system in the presence of active jamming attacks.more » « less
-
Abstract Cyber‐physical systems (CPS) integrate control, sensing, and processing into interconnected physical components to support applications within transportation, energy, healthcare, environment, and various other areas. Secure and reliable wireless communication between devices is necessary to enable the widespread adoption of these emerging technologies. Cyber‐physical systems devices must be protected against active threats, such as Radio Frequency (RF) Jammers, which intentionally disrupt communication links. Jamming detection and mitigation techniques must be evaluated extensively to validate algorithms prior to full implementation. Challenges related to obtaining zoning permits, Federal Aviation Administration (FAA) pilot certification for Unmanned Aerial Vehicles (UAVs), and Federal Communications Commission (FCC) licencing lead to evaluation limited to simulation‐based or simplistic, non‐representative hardware experimentation. A site‐specific ray‐tracing emulation framework is presented to provide a realistic evaluation of communication devices under RF jamming attacks in complex scenarios involving mobility, vehicular, and UAV systems. System architecture and capabilities are provided for the devices under test, real‐world jamming adversaries, channel modelling, and channel emulation. Case studies are provided to demonstrate the use of the framework for different applications and jamming threats. The experimental results illustrate the benefit of the ray‐tracing emulation system for conducting complex wireless communication studies under the presence of RF jamming.more » « less
-
Abstract Low latency beamforming using phased antenna arrays is the key for practical deployment of envisioned millimetre wave (mmWave) Gbps mobile networks. This work aims towards reducing the overhead of the exhaustive sector‐level sweep phase of the analog beamforming adopted in the IEEE 802.11ad standard. This work is the first to propose the use of reconfigurable antenna single RF chain in the sub‐6 GHz new radio (NR) band to aid codebook‐based beam selection in the mmWave band of the NR. We exploit the congruence between the spatial propagation signatures of signals at both mmWave and sub‐6 GHz frequencies to reduce the beam search space. The simulation results show a significant reduction in mmWave beam search overhead up to on average and with an average gain loss of 3dB.more » « less
-
Flexible antennas have the potential to transform wearable and fabric‐based wireless sensing technologies. The antenna discussed in this study is part of a sensing system that uses the back‐scattered power level as the decision metric. For a good wireless sensor, it is necessary to offer a feasible read range and maintain good distinctions in the back‐scattered power levels between the different states (i.e. level of stretch) of the antenna. Moreover, effects due to human body proximity should be minimised. For these reasons, the radiation efficiency is a crucial parameter to investigate. This study presents the radiation efficiency measurement of the proposed flexible knitted ‘Bellyband’ antenna at two different levels of stretch in a reverberation chamber. This work validates the reverberation chamber measurements through comparison with simulations and anechoic chamber measurements at 900 MHz. Moreover, this work demonstrates how the approach can be used to quantify bellyband antenna efficiency in the vicinity of a human body. Finally, the efficiency results were used to predict the read range of Bellyband radio frequency identification technology.more » « less