Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2025
-
Abstract Aerosol Optical Depth (AOD) is a crucial atmospheric parameter in comprehending climate change, air quality, and its impacts on human health. Satellites offer exceptional spatiotemporal AOD data continuity. However, data quality is influenced by various atmospheric, landscape, and instrumental factors, resulting in data gaps. This study presents a new solution to this challenge by providing a long-term, gapless satellite-derived AOD dataset for Texas from 2010 to 2022, utilizing Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-angle Implementation of Atmospheric Correction (MAIAC) products. Missing AOD data were reconstructed using a spatiotemporal Long Short-Term Memory (LSTM) convolutional autoencoder. Evaluation against an independent test dataset demonstrated the model’s effectiveness, with an average Root Mean Square Error (RMSE) of 0.017 and an R2value of 0.941. Validation against the ground-based AERONET dataset indicated satisfactory agreement, with RMSE values ranging from 0.052 to 0.067. The reconstructed AOD data are available at daily, monthly, quarterly, and yearly scales, providing a valuable resource to advance understanding of the Earth’s atmosphere and support decision-making concerning air quality and public health.
-
null (Ed.)Wirelessly powered neural stimulation and recording system is crucially important for the long-term study of the animal behaviors for the treatment of chronic neuropathic diseases. Headstage based neural implant is one of the popular methods to stimulate the neurons. In this work, a homecage based wireless power transfer (WPT) system is developed to supply power to a 3-D printed headstage which consists of a receiver (RX) coil, a rectifier and a light-emitting diode (LED) for optogenetic stimulation. A multilayer transmitter (TX) coil is designed to provide power over the 28.5 cm × 18 cm homecage area. The proposed system is able to achieve a maximum of 41.7% efficiency at 5 cm distance through air media using less number of headstage resonators compared to the other state-of-the art works.more » « less