skip to main content


Title: Reconstructing aerosol optical depth using spatiotemporal Long Short-Term Memory convolutional autoencoder
Abstract

Aerosol Optical Depth (AOD) is a crucial atmospheric parameter in comprehending climate change, air quality, and its impacts on human health. Satellites offer exceptional spatiotemporal AOD data continuity. However, data quality is influenced by various atmospheric, landscape, and instrumental factors, resulting in data gaps. This study presents a new solution to this challenge by providing a long-term, gapless satellite-derived AOD dataset for Texas from 2010 to 2022, utilizing Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-angle Implementation of Atmospheric Correction (MAIAC) products. Missing AOD data were reconstructed using a spatiotemporal Long Short-Term Memory (LSTM) convolutional autoencoder. Evaluation against an independent test dataset demonstrated the model’s effectiveness, with an average Root Mean Square Error (RMSE) of 0.017 and an R2value of 0.941. Validation against the ground-based AERONET dataset indicated satisfactory agreement, with RMSE values ranging from 0.052 to 0.067. The reconstructed AOD data are available at daily, monthly, quarterly, and yearly scales, providing a valuable resource to advance understanding of the Earth’s atmosphere and support decision-making concerning air quality and public health.

 
more » « less
NSF-PAR ID:
10477094
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
10
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ground-level ozone (O3) is a major air pollutant that adversely affects human health and ecosystem productivity. Removal of troposphericO3 by plant stomatal uptake can in turn cause damage to plant tissues with ramifications for ecosystem and crop health. In manyatmospheric and land surface models, the functionality of stomata opening is represented by a bulk stomatal conductance, which is oftensemi-empirically parameterized and highly fitted to historical observations. A lack of mechanistic linkage to ecophysiological processes such asphotosynthesis may render models inadequate to represent plant-mediated responses of atmospheric chemistry to long-term changes in CO2,climate, and short-lived air pollutant concentrations. A new ecophysiology module was thus developed to mechanistically simulate land−atmosphereexchange of important gas species in GEOS-Chem, a chemical transport model widely used in atmospheric chemistry studies. The implementation not onlyallows for dry deposition to be coupled with plant ecophysiology but also enables plant and crop productivity and functions to respond dynamically toatmospheric chemical changes. We conduct simulations to evaluate the effects of the ecophysiology module on simulated dry deposition velocity andconcentration of surface O3 against an observation-derived dataset known as SynFlux. Our estimated stomatal conductance and dry depositionvelocity of O3 are close to SynFlux with root-mean-squared errors (RMSEs) below 0.3 cm s−1 across different plant functionaltypes (PFTs), despite an overall positive bias in surface O3 concentration (by up to 16 ppbv). Representing ecophysiology wasfound to reduce the simulated biases in deposition fluxes from the prior model but worsen the positive biases in simulated O3concentrations. The increase in positive concentration biases is mostly attributable to the ecophysiology-based stomatal conductance being generallysmaller (and closer to SynFlux values) than that estimated by the prior semi-empirical formulation, calling for further improvements in non-stomataldepositional and non-depositional processes relevant for O3 simulations. The estimated global O3 deposition flux is864 Tg O3 yr−1 with GEOS-Chem, and the new module decreases this estimate by 92 Tg O3 yr−1. Estimated global grossprimary production (GPP) without O3 damage is 119 Pg C yr−1. O3-induced reduction in GPP is 4.2 Pg C yr−1(3.5 %). An elevated CO2 scenario (580 ppm) yields higher global GPP (+16.8 %) and lower global O3depositional sink (−3.3 %). Global isoprene emission simulated with a photosynthesis-based scheme is 317.9 Tg C yr−1, which is31.2 Tg C yr−1 (−8.9 %) less than that calculated using the MEGAN(Model of Emissions of Gases and Aerosols from Nature) emission algorithm. This new model development dynamicallyrepresents the two-way interactions between vegetation and air pollutants and thus provides a unique capability in evaluating vegetation-mediatedprocesses and feedbacks that can shape atmospheric chemistry and air quality, as well as pollutant impacts on vegetation health, especially for anytimescales shorter than the multidecadal timescale. 
    more » « less
  2. Abstract

    Dry deposition of ozone is an important sink of ozone in near‐surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short‐lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely used models. If coordinated with short‐term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long‐term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.

     
    more » « less
  3. Abstract

    Temporal changes in the magnitude and geographic distribution of different sources of nitrous oxide (N2O) are not well constrained. To better understand the dynamics of N2O in the atmosphere over the last century, we have reconstructed the mole fraction, δ15Nbulk, δ18O, and δ15NSPvalues of N2O from ice cores, firn air archives, and modern atmospheric samples. We have provided new firn air records from the Styx Glacier, Antarctica, and the North Greenland Eemian Ice drilling Project, and updated the firn air transport modeling of the published records. The composite reconstruction shows that the N2O growth rates were 0.26 ± 0.05, 0.15 ± 0.05 and 0.75 ± 0.01 ppb yr−1during 1850–1930 (P1), 1931–1965 (P2) and 1966–2021 CE (P3), respectively. The temporal slope found in a linear least squares fit in δ15Nbulkand δ18O were −0.010 ± 0.025 and −0.004 ± 0.031‰ yr−1, −0.014 ± 0.013 and −0.009 ± 0.017‰ yr−1, and −0.040 ± 0.013 and −0.022 ± 0.005‰ yr−1during P1, P2 and P3 phases, respectively. Overall, a significant long‐term trend was not observed in δ15NSPdata. Two‐box model calculations using N2O mole fraction suggest that the total N2O flux (FT) at 2015 CE was 17.5 ± 1.1 TgN yr−1, where flux from the natural (FN) and anthropogenic (FA) sources were ∼60% and 40% ofFT, respectively, and the contribution ofFAwas ∼30% ofFTat 1900 CE. EstimatedFAand δ15Nbulkof atmospheric N2O suggest that the anthropogenic emissions from continental regions were 12%, 25% and 76% ofFAduring P1, P2 and P3 phases, respectively.

     
    more » « less
  4. Abstract

    Global economic development and urbanization during the past two decades have driven the increases in demand of personal and commercial vehicle fleets, especially in developing countries, which has likely resulted in changes in year-to-year vehicle tailpipe emissions associated with aerosols and trace gases. However, long-term trends of impacts of global gasoline and diesel emissions on air quality and human health are not clear. In this study, we employ the Community Earth System Model in conjunction with the newly developed Community Emissions Data System as anthropogenic emission inventory to quantify the long-term trends of impacts of global gasoline and diesel emissions on ambient air quality and human health for the period of 2000–2015. Global gasoline and diesel emissions contributed to regional increases in annual mean surface PM2.5(particulate matter with aerodynamic diameters ⩽2.5μm) concentrations by up to 17.5 and 13.7µg m−3, and surface ozone (O3) concentrations by up to 7.1 and 7.2 ppbv, respectively, for 2000–2015. However, we also found substantial declines of surface PM2.5and O3concentrations over Europe, the US, Canada, and China for the same period, which suggested the co-benefits of air quality and human health from improving gasoline and diesel fuel quality and tightening vehicle emissions standards. Globally, we estimate the mean annual total PM2.5- and O3-induced premature deaths are 139 700–170 700 for gasoline and 205 200–309 300 for diesel, with the corresponding years of life lost of 2.74–3.47 and 4.56–6.52 million years, respectively. Diesel and gasoline emissions create health-effect disparities between the developed and developing countries, which are likely to aggravate afterwards.

     
    more » « less
  5. Abstract

    Improved characterization of the spatiotemporal extent, intensity, and causes of extreme aerosol optical depth events is critical to quantifying their regional climate forcing and the link to near‐surface air quality. An analysis of regional‐scale extreme aerosol events over the eastern United States is undertaken using output from the Modern‐Era Retrospective analysis for Research and Applications, version 2 (MERRA‐2) reanalysis and observations from the MODerate resolution Imaging Spectroradiometers (MODIS). Six extreme aerosol optical depth (AOD) events during 2003–2007, dominated by anthropogenic emissions and characterized by a regional scale extent, are identified and simulated using the Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) applied at 12 km resolution. Statistical analyses show output from WRF‐Chem during these events is generally negatively biased in terms of the mean AOD and PM2.5, but WRF‐Chem exhibits skill in capturing the peak AOD. WRF‐Chem also exhibits fidelity in reproducing the spatiotemporal characteristics of the extreme AOD events in intensity, location of centroid, propagation, duration, and their spatial extension. Considerable event‐to‐event variability in model skill in simulating spatial patterns of extreme events is observed, with the highest spatial correlation with MERRA‐2 AOD noted for events centered in the Midwest. Mean fractional bias in modeled peak AOD is minimized for the most intense events and for events centered over the southeastern USA. WRF‐Chem output is also negatively biased in downwelling shortwave radiation at the ground and specific humidity consistent with a positive bias in simulated precipitation relative to MERRA‐2.

     
    more » « less