Summertime air quality is a growing public health concern in the populated region of Northern Utah. Whereas winter air pollution is highly linked with local atmospheric temperature inversions associated with upper atmospheric high-pressure and radiational cooling in valleys, the relationship between climate factors and the frequency of poor air quality during summer is still unknown. Analyzing the last 20 years of data, we demonstrated that summertime unhealthy days (as defined by PM2.5 air quality index level) in Northern Utah highly correlate with the number of dry-hot days, wildfire size, and an upper atmospheric ridge over the Northwestern United States. The persistent atmospheric ridge enhances lightning-caused fire burned areas in northwestern states and then transports the wildfire smoke toward Northern Utah. Similarly, climate model simulations confirm observational findings, such as an increasing trend of the upper atmospheric ridge and summertime dry days in the northwestern states. Such metrics developed in this study could be used to establish longer-term monitoring and seasonal forecasting for air quality and its compounding factors, which is currently limited to forecasting products for only several days.
Aerosol Optical Depth (AOD) is a crucial atmospheric parameter in comprehending climate change, air quality, and its impacts on human health. Satellites offer exceptional spatiotemporal AOD data continuity. However, data quality is influenced by various atmospheric, landscape, and instrumental factors, resulting in data gaps. This study presents a new solution to this challenge by providing a long-term, gapless satellite-derived AOD dataset for Texas from 2010 to 2022, utilizing Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-angle Implementation of Atmospheric Correction (MAIAC) products. Missing AOD data were reconstructed using a spatiotemporal Long Short-Term Memory (LSTM) convolutional autoencoder. Evaluation against an independent test dataset demonstrated the model’s effectiveness, with an average Root Mean Square Error (RMSE) of 0.017 and an R2value of 0.941. Validation against the ground-based AERONET dataset indicated satisfactory agreement, with RMSE values ranging from 0.052 to 0.067. The reconstructed AOD data are available at daily, monthly, quarterly, and yearly scales, providing a valuable resource to advance understanding of the Earth’s atmosphere and support decision-making concerning air quality and public health.
more » « less- Award ID(s):
- 2117505
- NSF-PAR ID:
- 10477094
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Dry deposition of ozone is an important sink of ozone in near‐surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short‐lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely used models. If coordinated with short‐term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long‐term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
-
Abstract Improved characterization of the spatiotemporal extent, intensity, and causes of extreme aerosol optical depth events is critical to quantifying their regional climate forcing and the link to near‐surface air quality. An analysis of regional‐scale extreme aerosol events over the eastern United States is undertaken using output from the Modern‐Era Retrospective analysis for Research and Applications, version 2 (MERRA‐2) reanalysis and observations from the MODerate resolution Imaging Spectroradiometers (MODIS). Six extreme aerosol optical depth (AOD) events during 2003–2007, dominated by anthropogenic emissions and characterized by a regional scale extent, are identified and simulated using the Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) applied at 12 km resolution. Statistical analyses show output from WRF‐Chem during these events is generally negatively biased in terms of the mean AOD and PM2.5, but WRF‐Chem exhibits skill in capturing the peak AOD. WRF‐Chem also exhibits fidelity in reproducing the spatiotemporal characteristics of the extreme AOD events in intensity, location of centroid, propagation, duration, and their spatial extension. Considerable event‐to‐event variability in model skill in simulating spatial patterns of extreme events is observed, with the highest spatial correlation with MERRA‐2 AOD noted for events centered in the Midwest. Mean fractional bias in modeled peak AOD is minimized for the most intense events and for events centered over the southeastern USA. WRF‐Chem output is also negatively biased in downwelling shortwave radiation at the ground and specific humidity consistent with a positive bias in simulated precipitation relative to MERRA‐2.
-
Abstract This paper examines the accuracy of Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) generated 72 hr fine particulate matter (PM2.5) forecasts in Delhi during the crop residue burning season of October‐November 2017 with respect to assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals, persistent fire emission assumption, and aerosol‐radiation interactions. The assimilation significantly pushes the model AOD and PM2.5toward the observations with the largest changes below 5 km altitude in the fire source regions (northeastern Pakistan, Punjab, and Haryana) as well as the receptor New Delhi. WRF‐Chem forecast with MODIS AOD assimilation, aerosol‐radiation feedback turned on, and real‐time fire emissions reduce the mean bias by 88–195 μg/m3(70–86%) with the largest improvement during the peak air pollution episode of 6–13 November 2017. Aerosol‐radiation feedback contributes ~21%, ~25%, and ~24% to reduction in mean bias of the first, second, and third days of PM2.5forecast. Persistence fire emission assumption is found to work really well, as the accuracy of PM2.5forecasts driven by persistent fire emissions was only 6% lower compared to those driven by real fire emissions. Aerosol‐radiation feedback extends the benefits of assimilating satellite AOD beyond PM2.5forecasts to surface temperature forecast with a reduction in the mean bias of 0.9–1.5°C (17–30%). These results demonstrate that air quality forecasting can benefit substantially from satellite AOD observations particularly in developing countries that lack resources to rapidly build dense air quality monitoring networks.
-
Abstract Global economic development and urbanization during the past two decades have driven the increases in demand of personal and commercial vehicle fleets, especially in developing countries, which has likely resulted in changes in year-to-year vehicle tailpipe emissions associated with aerosols and trace gases. However, long-term trends of impacts of global gasoline and diesel emissions on air quality and human health are not clear. In this study, we employ the Community Earth System Model in conjunction with the newly developed Community Emissions Data System as anthropogenic emission inventory to quantify the long-term trends of impacts of global gasoline and diesel emissions on ambient air quality and human health for the period of 2000–2015. Global gasoline and diesel emissions contributed to regional increases in annual mean surface PM2.5(particulate matter with aerodynamic diameters ⩽2.5
μ m) concentrations by up to 17.5 and 13.7µ g m−3, and surface ozone (O3) concentrations by up to 7.1 and 7.2 ppbv, respectively, for 2000–2015. However, we also found substantial declines of surface PM2.5and O3concentrations over Europe, the US, Canada, and China for the same period, which suggested the co-benefits of air quality and human health from improving gasoline and diesel fuel quality and tightening vehicle emissions standards. Globally, we estimate the mean annual total PM2.5- and O3-induced premature deaths are 139 700–170 700 for gasoline and 205 200–309 300 for diesel, with the corresponding years of life lost of 2.74–3.47 and 4.56–6.52 million years, respectively. Diesel and gasoline emissions create health-effect disparities between the developed and developing countries, which are likely to aggravate afterwards.