skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Das, Dipanjan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fuzzing reliably and efficiently finds bugs in software, including operating system kernels. In general, higher code coverage leads to the discovery of more bugs. This is why most existing kernel fuzzers adopt strategies to generate a series of inputs that attempt to greedily maximize the amount of code that they exercise. However, simply executing code may not be sufficient to reveal bugs that require specific sequences of actions. Synthesizing inputs to trigger such bugs depends on two aspects: (i) the actions the executed code takes, and (ii) the order in which those actions are taken. An action is a high-level operation, such as a heap allocation, that is performed by the executed code and has a specific semantic meaning. ACTOR, our action-guided kernel fuzzing framework, deviates from traditional methods. Instead of focusing on code coverage optimization, our approach generates fuzzer programs (inputs) that leverage our understanding of triggered actions and their temporal relationships. Specifically, we first capture actions that potentially operate on shared data structures at different times. Then, we synthesize programs using those actions as building blocks, guided by bug templates expressed in our domain-specific language. We evaluated ACTOR on four different versions of the Linux kernel, including two well-tested and frequently updated long-term (5.4.206, 5.10.131) versions, a stable (5.19), and the latest (6.2-rc5) release. Our evaluation revealed a total of 41 previously unknown bugs, of which 9 have already been fixed. Interestingly, 15 (36.59%) of them were discovered in less than a day. 
    more » « less
  2. Fuzzing reliably and efficiently finds bugs in software, including operating system kernels. In general, higher code coverage leads to the discovery of more bugs. This is why most existing kernel fuzzers adopt strategies to generate a series of inputs that attempt to greedily maximize the amount of code that they exercise. However, simply executing code may not be sufficient to reveal bugs that require specific sequences of actions. Synthesizing inputs to trigger such bugs depends on two aspects: (i) the actions the executed code takes, and (ii) the order in which those actions are taken. An action is a high-level operation, such as a heap allocation, that is performed by the executed code and has a specific semantic meaning. ACTOR, our action-guided kernel fuzzing framework, deviates from traditional methods. Instead of focusing on code coverage optimization, our approach generates fuzzer programs (inputs) that leverage our understanding of triggered actions and their temporal relationships. Specifically, we first capture actions that potentially operate on shared data structures at different times. Then, we synthesize programs using those actions as building blocks, guided by bug templates expressed in our domain-specific language. We evaluated ACTOR on four different versions of the Linux kernel, including two well-tested and frequently updated long-term (5.4.206, 5.10.131) versions, a stable (5.19), and the latest (6.2-rc5) release. Our evaluation revealed a total of 41 previously unknown bugs, of which 9 have already been fixed. Interestingly, 15 (36.59%) of them were discovered in less than a day. 
    more » « less
  3. This paper presents SAILFISH, a scalable system for automatically finding state-inconsistency bugs in smart contracts. To make the analysis tractable, we introduce a hybrid approach that includes (i) a light-weight exploration phase that dramatically reduces the number of instructions to analyze, and (ii) a precise refinement phase based on symbolic evaluation guided by our novel value-summary analysis, which generates extra constraints to over-approximate the side effects of whole-program execution, thereby ensuring the precision of the symbolic evaluation. We developed a prototype of SAILFISH and evaluated its ability to detect two state-inconsistency flaws, viz., reentrancy and transaction order dependence (TOD) in Ethereum smart contracts. Our experiments demonstrate the efficiency of our hybrid approach as well as the benefit of the value summary analysis. In particular, we show that SAILFISH outperforms five state-of the-art smart contract analyzers (SECURIFY, MYTHRIL, OYENTE, SEREUM and VANDAL) in terms of performance, and precision. In total, SAILFISH discovered 47 previously unknown vulnerable smart contracts out of 89,853 smart contracts from ETHERSCAN. 
    more » « less