- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Daskalakis, Leonidas (3)
-
Bahnson, Erik (1)
-
Dohadwala, Abbas (1)
-
Shah, Ish (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We establish pointwise convergence for nonconventional ergodic averages taken along $$\lfloor p^{c}\rfloor $$, where $$p$$ is a prime number and $$c\in (1,4/3)$$ on $$L^{r}$$, $$r\in (1,\infty )$$. In fact, we consider averages along more general sequences $$\lfloor h(p)\rfloor $$, where $$h$$ belongs in a wide class of functions, the so-called $$c$$-regularly varying functions. We also establish uniform multiparameter oscillation estimates for our ergodic averages and the corresponding multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund. A key ingredient of our approach are certain exponential sum estimates, which we also use for establishing a Waring-type result. Assuming that the Riemann zeta function has any zero-free strip upgrades our exponential sum estimates to polynomially saving ones and this makes a conditional result regarding the behavior of our ergodic averages on $$L^{1}$$ to not seem entirely out of reach.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Daskalakis, Leonidas (, Journal of Fourier Analysis and Applications)Abstract We establish weak-type (1, 1) bounds for the maximal function associated with ergodic averaging operators modeled on a wide class of thin deterministic setsB. As a corollary we obtain the corresponding pointwise convergence result on$$L^1$$ . This contributes yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991 asserting the failure of pointwise convergence on$$L^1$$ of ergodic averages along arithmetic sets with zero Banach density. The second main result is a multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund alongBon$$L^p$$ ,$$p>1$$ , which is derived by establishing uniform oscillation estimates and certain vector-valued maximal estimates.more » « less
-
Daskalakis, Leonidas (, Journal of Functional Analysis)
An official website of the United States government
