skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Pointwise Ergodic Theorems Along Fractional Powers of Primes
Abstract We establish pointwise convergence for nonconventional ergodic averages taken along $$\lfloor p^{c}\rfloor $$, where $$p$$ is a prime number and $$c\in (1,4/3)$$ on $$L^{r}$$, $$r\in (1,\infty )$$. In fact, we consider averages along more general sequences $$\lfloor h(p)\rfloor $$, where $$h$$ belongs in a wide class of functions, the so-called $$c$$-regularly varying functions. We also establish uniform multiparameter oscillation estimates for our ergodic averages and the corresponding multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund. A key ingredient of our approach are certain exponential sum estimates, which we also use for establishing a Waring-type result. Assuming that the Riemann zeta function has any zero-free strip upgrades our exponential sum estimates to polynomially saving ones and this makes a conditional result regarding the behavior of our ergodic averages on $$L^{1}$$ to not seem entirely out of reach.  more » « less
Award ID(s):
2154712
PAR ID:
10630014
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford Academic Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2025
Issue:
15
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We establish weak-type (1, 1) bounds for the maximal function associated with ergodic averaging operators modeled on a wide class of thin deterministic setsB. As a corollary we obtain the corresponding pointwise convergence result on$$L^1$$ L 1 . This contributes yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991 asserting the failure of pointwise convergence on$$L^1$$ L 1 of ergodic averages along arithmetic sets with zero Banach density. The second main result is a multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund alongBon$$L^p$$ L p ,$$p>1$$ p > 1 , which is derived by establishing uniform oscillation estimates and certain vector-valued maximal estimates. 
    more » « less
  2. Abstract We prove convergence in norm and pointwise almost everywhere on$$L^p$$,$$p\in (1,\infty )$$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages. 
    more » « less
  3. Abstract We prove uniform$$\ell ^2$$ 2 -valued maximal inequalities for polynomial ergodic averages and truncated singular operators of Cotlar type modeled over multidimensional subsets of primes. In the averages case, we combine this with earlier one-parameter oscillation estimates (Mehlhop and Słomian in Math Ann, 2023,https://doi.org/10.1007/s00208-023-02597-8) to prove corresponding multiparameter oscillation estimates. This provides a fuller quantitative description of the pointwise convergence of the mentioned averages and is a generalization of the polynomial Dunford–Zygmund ergodic theorem attributed to Bourgain (Mirek et al. in Rev Mat Iberoam 38:2249–2284, 2022). 
    more » « less
  4. Lu, Guozhen (Ed.)
    Abstract We discuss some of our work on averages along polynomial sequences in nilpotent groups of step 2. Our main results include boundedness of associated maximal functions and singular integrals operators, an almost everywhere pointwise convergence theorem for ergodic averages along polynomial sequences, and a nilpotent Waring theorem. Our proofs are based on analytical tools, such as a nilpotent Weyl inequality, and on complex almost-orthogonality arguments that are designed to replace Fourier transform tools, which are not available in the noncommutative nilpotent setting. In particular, we present what we call anilpotent circle methodthat allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups. 
    more » « less
  5. Abstract Let$$\lambda $$ λ denote the Liouville function. We show that the logarithmic mean of$$\lambda (\lfloor \alpha _1n\rfloor )\lambda (\lfloor \alpha _2n\rfloor )$$ λ ( α 1 n ) λ ( α 2 n ) is 0 whenever$$\alpha _1,\alpha _2$$ α 1 , α 2 are positive reals with$$\alpha _1/\alpha _2$$ α 1 / α 2 irrational. We also show that for$$k\geqslant 3$$ k 3 the logarithmic mean of$$\lambda (\lfloor \alpha _1n\rfloor )\cdots \lambda (\lfloor \alpha _kn\rfloor )$$ λ ( α 1 n ) λ ( α k n ) has some nontrivial amount of cancellation, under certain rational independence assumptions on the real numbers$$\alpha _i.$$ α i . Our results for the Liouville function generalise to produce independence statements for general bounded real-valued multiplicative functions evaluated at Beatty sequences. These results answer the two-point case of a conjecture of Frantzikinakis (and provide some progress on the higher order cases), generalising a recent result of Crnčević–Hernández–Rizk–Sereesuchart–Tao. As an ingredient in our proofs, we establish bounds for the logarithmic correlations of the Liouville function along Bohr sets. 
    more » « less