Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul, which implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable conditions for a Lipschitz map to have a large piece of its domain on which it behaves like an orthogonal projection. The proof involves new lower bounds and continuity statements for mapping content, and relies on a “qualitative” version of the main theorem recently proven by Esmayli–Hajłasz.more » « less
-
We study metric measure spaces that have quantitative topological control, as well as a weak form of differentiable structure. In particular, let X be a pointwise doubling metric measure space. Let U be a Borel subset on which the blowups of X are topological planes. We show that U can admit at most 2 independent Alberti representations. Furthermore, if U admits 2 Alberti representations, then the restriction of the measure to U is 2-rectifiable. This is a partial answer to the case n=2 of a question of the second author and Schioppa.more » « less
An official website of the United States government
