skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Rectifiability of planes and Alberti representations
We study metric measure spaces that have quantitative topological control, as well as a weak form of differentiable structure. In particular, let X be a pointwise doubling metric measure space. Let U be a Borel subset on which the blowups of X are topological planes. We show that U can admit at most 2 independent Alberti representations. Furthermore, if U admits 2 Alberti representations, then the restriction of the measure to U is 2-rectifiable. This is a partial answer to the case n=2 of a question of the second author and Schioppa.  more » « less
Award ID(s):
1758709
NSF-PAR ID:
10108544
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annali della Scuola normale superiore di Pisa. Classe di scienze
Volume:
XIX
Issue:
2
ISSN:
0391-173X
Page Range / eLocation ID:
723-756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let u u be a nontrivial harmonic function in a domain D ⊂ R d D\subset {{\mathbb{R}}}^{d} , which vanishes on an open set of the boundary. In a recent article, we showed that if D D is a C 1 {C}^{1} -Dini domain, then, within the open set, the singular set of u u , defined as { X ∈ D ¯ : u ( X ) = 0 = ∣ ∇ u ( X ) ∣ } \left\{X\in \overline{D}:u\left(X)=0=| \nabla u\left(X)| \right\} , has finite ( d − 2 ) \left(d-2) -dimensional Hausdorff measure. In this article, we show that the assumption of C 1 {C}^{1} -Dini domains is sharp, by constructing a large class of non-Dini (but almost Dini) domains whose singular sets have infinite ℋ d − 2 {{\mathcal{ {\mathcal H} }}}^{d-2} -measures. 
    more » « less
  2. Let 𝑋=𝐺/Γ, where G is a Lie group and Γ is a lattice in G, and let U be a subset of X whose complement is compact. We use the exponential mixing results for diagonalizable flows on X to give upper estimates for the Hausdorff dimension of the set of points whose trajectories miss U. This extends a recent result of Kadyrov et al. (Dyn Syst 30(2):149–157, 2015) and produces new applications to Diophantine approximation, such as an upper bound for the Hausdorff dimension of the set of weighted uniformly badly approximable systems of linear forms, generalizing an estimate due to Broderick and Kleinbock (Int J Number Theory 11(7):2037–2054, 2015). 
    more » « less
  3. null (Ed.)
    Let $f:X\rightarrow X$ be a continuous dynamical system on a compact metric space $X$ and let $\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$ be an $m$ -dimensional continuous potential. The (generalized) rotation set $\text{Rot}(\unicode[STIX]{x1D6F7})$ is defined as the set of all $\unicode[STIX]{x1D707}$ -integrals of $\unicode[STIX]{x1D6F7}$ , where $\unicode[STIX]{x1D707}$ runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy $\unicode[STIX]{x210B}(w)$ to each $w\in \text{Rot}(\unicode[STIX]{x1D6F7})$ . In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where $f$ is a subshift of finite type. We prove that $\text{Rot}(\unicode[STIX]{x1D6F7})$ is computable and that $\unicode[STIX]{x210B}(w)$ is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general, $\unicode[STIX]{x210B}$ is not continuous on the boundary of the rotation set when considered as a function of $\unicode[STIX]{x1D6F7}$ and $w$ . In particular, $\unicode[STIX]{x210B}$ is, in general, not computable at the boundary of $\text{Rot}(\unicode[STIX]{x1D6F7})$ . 
    more » « less
  4. Let (X, ω) be a Kähler manifold and ψ : R → R+ be a concave weight. We show that Hω admits a natural metric dψ whose completion is the low energy space Eψ , introduced by Guedj–Zeriahi. As dψ is not induced by a Finsler metric, the main difficulty is to show that the triangle inequality holds. We study properties of the resulting complete metric space (Eψ , dψ ). 
    more » « less
  5. Abstract Let Ω ⊂ ℝ n + 1 {\Omega\subset\mathbb{R}^{n+1}} , n ≥ 2 {n\geq 2} , be a 1-sided non-tangentially accessible domain (also known as uniform domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us assume also that Ω satisfies the so-called capacity density condition, a quantitative version of the fact that all boundary points are Wiener regular. Consider two real-valued (non-necessarily symmetric) uniformly elliptic operators L 0 ⁢ u = - div ⁡ ( A 0 ⁢ ∇ ⁡ u )   and   L ⁢ u = - div ⁡ ( A ⁢ ∇ ⁡ u ) L_{0}u=-\operatorname{div}(A_{0}\nabla u)\quad\text{and}\quad Lu=-%\operatorname{div}(A\nabla u) in Ω, and write ω L 0 {\omega_{L_{0}}} and ω L {\omega_{L}} for the respective associated elliptic measures. The goal of this article and its companion[M. Akman, S. Hofmann, J. M. Martell and T. Toro,Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition,preprint 2021, https://arxiv.org/abs/1901.08261v3 ]is to find sufficient conditions guaranteeing that ω L {\omega_{L}} satisfies an A ∞ {A_{\infty}} -condition or a RH q {\operatorname{RH}_{q}} -condition with respect to ω L 0 {\omega_{L_{0}}} . In this paper, we are interested in obtaininga square function and non-tangential estimates for solutions of operators as before. We establish that bounded weak null-solutions satisfy Carleson measure estimates, with respect to the associated elliptic measure. We also show that for every weak null-solution, the associated square function can be controlled by the non-tangential maximal function in any Lebesgue space with respect to the associated elliptic measure. These results extend previous work ofDahlberg, Jerison and Kenig and are fundamental for the proof of the perturbation results in the paper cited above. 
    more » « less