skip to main content


Search for: All records

Creators/Authors contains: "Davis, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluorides are promising host materials for optical applications. This paper reports the photoluminescent (PL) and cathodoluminescent (CL) characteristics of barium hexafluorogermanate BaGeF 6 nanowires codoped with Ce 3+ , Tb 3+ and Sm 3+ rare earth ions, produced by a solvothermal route. The synthesized BaGeF 6 nanowires exhibit uniform morphology and size distribution. X-ray diffraction divulges the one-dimensional growth of crystalline BaGeF 6 structure, with the absence of any impurity phases. Visible luminescence is recorded from the nanowires in green and red regions, when the nanowires are codoped with Ce 3+ /Tb 3+ , and Ce 3+ /Tb 3+ /Sm 3+ , respectively, under a UV excitation source. The PL emission from the codoped BaGeF 6 nanowires, when excited by a 254 nm source, originates from the efficient energy transfer bridges between Ce 3+ , Tb 3+ and Sm 3+ ions. The decay time of the visible luminescent emission from the nanowires is in the order of subnanoseconds, being one of the shortest decay time records from inorganic scintillators. The CL emission from the BaGeF 6 nanowires in the tunable visible range reveals their potential use for the detection of high-energy radiation. The PL emissions are sensitive to H 2 O 2 at low concentrations, enabling their high-sensitivity detection of H 2 O 2 using BaGeF 6 nanowires. A comparison with BaSiF 6 nanowires is made in terms of decay time and its sensitivity towards H 2 O 2 . 
    more » « less
  2. Inorganic materials with short radiative decay time are highly desirable for fast optical sensors. This paper reports fast photoluminescence (PL) from a series of barium hexafluorosilicate (BaSiF 6 ) superlong nanowires with high aspect ratios, codoped with Ce 3+ /Tb 3+ /Eu 3+ ions, with a subnanosecond decay time. Solvothermally synthesized BaSiF 6 nanowires exhibit a uniform morphology, with an average diameter less than 40 nm and aspect ratios of over several hundreds, grown in the c -axis direction with {110} surfaces. The PL emission from the codoped BaSiF 6 nanowires, when excited by a 254 nm source, is dependent on Tb 3+ concentration, and the energy transfer from Ce 3+ to Tb 3+ and to Eu 3+ ions allows efficient emissions in the visible spectra when excited by a near UV source. Annealing BaSiF 6 nanowires at 600 °C in a vacuum produced barium fluoride (BaF 2 ) nanowires composed of nanocrystals. Both BaSiF 6 and BaF 2 nanowires exhibit fast emissions in the visible spectra, with enhanced intensities compared with their codoped microparticle counterparts. The decay time of codoped BaSiF 6 nanowires is found to be shorter than that of codoped BaF 2 nanowires. The energy transfer is also observed in their cathodoluminescence spectra with high-energy irradiation. 
    more » « less