skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Dawson, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Morph detection is of paramount significance when the integrity of Automatic Face Recognition (AFR) systems are concerned. Considering the risks incurred by morphing attacks, a robust automated morph detector is required which can distinguish authentic bona fide samples from altered morphed images. We leverage the wavelet sub-band decomposition of an input image, yielding the fine-grained spatial-frequency content of the input image. To enhance the detection of morphed images, our goal is to find the most discriminative information across frequency channels and spatial domain. To this end, we propose an end-to-end attention-based deep morph detector which assimilates the most discriminative wavelet sub-bands of a given image which are obtained by a group sparsity representation learning scheme. Specifically, our group sparsity-constrained Deep Neural Network (DNN) learns the most discriminative wavelet sub-bands (channels) of an input image while the attention mechanism captures the most discriminative spatial regions of input images for the downstream task of morph detection. To this end, we adopt three attention mechanisms to diversify our refined features for morph detection. As the first attention mechanism, we employ the Convolutional Block Attention Module (CBAM) which provides us with refined feature maps. As the second attention mechanism, compatibility scores across spatial locations and output of our DNN highlight the most discriminative regions, and lastly, the multiheaded self-attention augmented convolutions account for our third attention mechanism. We evaluate the efficiency of our proposed framework through extensive experiments using multiple morph datasets that are compiled using bona fide images available in the FERET, FRLL, FRGC, and WVU Twin datasets. Most importantly, our proposed methodology has resulted in a reduction in detection error rates when compared with state-of-the-art results. Finally, to further assess our multi-attentional morph detection, we delve into different combinations of attention mechanisms via a comprehensive ablation study. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024
  2. Contactless fingerprints have continued to grow interoperability as a faster and more convenient replacement for contact fingerprints, and with covid-19 now starting to be a past event the need for hygienic alternatives has only grown after the sudden focus during the pandemic. Though, past works have shown issues with the interoperability of contactless prints from both kiosk devices and phone fingerprint collection apps. The focus of the paper is the evaluation of match performance between contact and contactless fingerprints, and the evaluation of match score bias based on skin demographics. AUC results indicate contactless match performance is as good as contact fingerprints, while phone contactless fingerprints fall short. Additionally, bias found for melanin showed specific ranges affected in both low melanin values and high melanin values. 
    more » « less
  3. By combining two or more face images of look-alikes, morphed face images are generated to fool Facial Recognition Systems (FRS) into falsely accepting multiple people, leading to failures in security systems. Despite several attempts in the literature, finding pairs of bona fide faces to generate the morphed images is still a challenging problem. In this paper, we morph identical twin pairs to generate extremely difficult morphs for FRS. We first explore three methods of morphed face generation, GAN-based, landmark-based, and a wavelet-based morphing approach. We leverage these methods to generate morphs from the identical twin pairs that retain high similarity to both subjects while resulting in minimal artifacts in the visual domain. To further improve the difficulty of recognizing morphed face images, we perform an ablation study to apply adversarial perturbation to the morphs such that they cannot be detected by trained morph classifiers. The evaluation of the generated identical twin-morphed dataset is performed in terms of vulnerability analysis and presentation attack error rates. 
    more » « less
    Free, publicly-accessible full text available October 10, 2023
  4. Interoperability between contact to contactless images in fingerprint matching is a key factor in the success of contactless fingerprinting devices, which have recently witnessed an increasing demand for biometric authentication. However, due to the presence of perspective distortion and the absence of elastic deformation in contactless fingerphotos, direct matching between contactless fingerprint probe images and legacy contact-based gallery images produces a low accuracy. In this paper, to improve interoperability, we propose a coupled deep learning framework that consists of two Conditional Generative Adversarial Networks. Generative modeling is employed to find a projection that maximizes the pairwise correlation between these two domains in a common latent embedding subspace. Extensive experiments on three challenging datasets demonstrate significant performance improvements over the state-of-the-art methods and two top-performing commercial off-the-shelf SDKs, i.e., Verifinger 12.0 and Innovatrics. We also achieve a high-performance gain by combining multiple fingers of the same subject using a score fusion model. 
    more » « less