skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeBoer, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 13, 2026
  2. As radio spectrum becomes increasingly scarce, coexistence and bidirectional sharing between active and passive systems becomes a crucial target. In the past, spectrum regulations conferred radio astronomy a status on par with active services, thereby protecting their extreme sensitivity against any harmful interference. However, passive systems are likely to lose exclusive allocations as capacity constraints for active systems increase. The resulting increase in ambient radio frequency noise from various terrestrial and non-terrestrial emitters can only be mitigated with informed collaboration between active and passive users. While coexistence using time-division spectrum access has been proposed in the past, a more dynamic approach following the CBRS sharing principle promises greater spectral occupancy and efficiency, enabled by a spectrum access system capable of constantly monitoring the ambient RF environment. Instead of simply minimizing the potential for any ”harmful” interference to passive users, the goal is to use good engineering to enable sharing between active and passive users. To this end, this research created a Software Defined Radio (SDR)-based testbed at the the Hat Creek Radio Observatory to quantitatively characterize the radio-frequency environment, and flag potential sources of radio frequency interference in the vicinity of the Allen Telescope Array. Sensor validation was carried out via data analysis of I/Q data collected in well-characterized RF bands. Results so far from ground and drone-based surveys are consistent with the expected sources of interference, based on both the deployment of static RF transmitters in the Hat Creek/Redding area as well as the interference detected in telescope observations themselves. 
    more » « less
  3. Abstract Recently the James Webb Space Telescope performed near-infrared spectroscopic observations of the atmosphere of a potential Hycean exoplanet, K2-18 b. These spectra provided evidence of methane and carbon dioxide in its atmosphere, along with a possible line attributed to biomarker dimethyl sulfide. In this work, we present triggered narrow-band radio observations of K2-18 b conducted using the Allen Telescope Array over 3–10 GHz, in search of signs of artificially produced radio emissions (technosignatures). We do not find any spatially isolated signals in the direction of K2-18 b, establishing lower and upper limits on the equivalent isotropic radiated power (∼1013–1016 W) of potential extraterrestrial transmitters between 3 and 10 GHz. This study emphasizes the importance of ongoing observations to further explore K2-18 b’s potential as a candidate for the detection of technosignatures. 
    more » « less
  4. Free, publicly-accessible full text available May 12, 2026
  5. ABSTRACT FRB 20220912A is a repeating Fast Radio Burst (FRB) that was discovered in Fall 2022 and remained highly active for several months. We report the detection of 35 FRBs from 541 h of follow-up observations of this source using the recently refurbished Allen Telescope Array, covering 1344 MHz of bandwidth primarily centred at 1572 MHz. All 35 FRBs were detected in the lower half of the band with non-detections in the upper half and covered fluences from 4–431 Jy-ms (median = 48.27 Jy-ms). We find consistency with previous repeater studies for a range of spectrotemporal features including: bursts with downward frequency drifting over time; a positive correlation between bandwidth and centre frequency; and a decrease in sub-burst duration over time. We report an apparent decrease in the centre frequency of observed bursts over the two months of the observing campaign (corresponding to a drop of 6.21 ± 0.76 MHz per d). We predict a cut-off fluence for FRB 20220912A of Fmax ≲ 104 Jy-ms, for this source to be consistent with the all-sky rate, and find that FRB 20220912A significantly contributed to the all-sky FRB rate at a level of a few per cent for fluences of ∼100 Jy-ms. Finally, we investigate characteristic time-scales and sub-burst periodicities and find (a) a median inter-subburst time-scale of 5.82 ± 1.16 ms in the multi-component bursts and (b) no evidence of strict periodicity even in the most evenly spaced multi-component burst in the sample. Our results demonstrate the importance of wideband observations of FRBs, and provide an important set of observational parameters against which to compare FRB progenitor and emission mechanism models. 
    more » « less
  6. In this work, the SDR Pathfinder for Understanding Transient and Noise-level Interference in the Karoo (SPUTNIK) is presented. We describe how a low-cost radio frequency interference (RFI) monitoring system, using solely consumer-off-the-shelf (COTS) components, directly contributes to the analysis efforts of a precision 21[Formula: see text]cm cosmology instrument. A SPUTNIK system overview is provided, as well as a generalized software-defined radio (SDR) internal calibration technique to achieve wideband, [Formula: see text][Formula: see text]dBm-level accuracy and a measured dynamic range of [Formula: see text][Formula: see text]dB. 
    more » « less
  7. Abstract The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a ‘prompt’ gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circumburst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A that reveal in detail, both temporally and in frequency space, an optically thick rising component from the reverse shock. From this, we are able to constrain the size, Lorentz factor and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst. These observations challenge standard gamma-ray burst models describing reverse shock emission. 
    more » « less
  8. Caballero identified the star 2MASS 19281982-2640123 as a potential Sun-like star from which the WOW! signal could have originated. We conducted a search for artificial narrowband (2.79 Hz/1.91 Hz), drifting (±4 Hz s^−1) technosignatures from this source using the turboSETI pipeline, from 1–2 GHz, using simultaneous multi-telescope observations with both the Robert C. Byrd Green Bank Telescope and the newly refurbished Allen Telescope Array on 2022 May 21. Both telescope observations had an overlap of 580 s. While blind searches using radio telescopes have been conducted in the general field of view in which the WOW! signal was first detected, this is the first time a targeted search has been done. No technosignature candidates were detected. 
    more » « less