Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The sensitivity of sea ice to fire emissions highlights climate model uncertainty related to the accuracy of prescribed forcings.Free, publicly-accessible full text available July 29, 2023
-
Free, publicly-accessible full text available April 1, 2023
-
We provide an assessment of the current and future states of Arctic sea ice simulated by the Community Earth System Model version 2 (CESM2). The CESM2 is the version of the CESM contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We analyze changes in Arctic sea ice cover in two CESM2 configurations with differing atmospheric components: the CESM2(CAM6) and the CESM2(WACCM6). Over the historical period, the CESM2(CAM6) winter ice thickness distribution is biased thin, which leads to lower summer ice area compared to CESM2(WACCM6) and observations. In both CESM2 configurations, the timing of first ice‐free conditions is insensitive to the choice of CMIP6 future emissions scenario. In fact, the probability of an ice‐free Arctic summer remains low only if global warming stays below 1.5°C, which none of the CMIP6 scenarios achieve. By the end of the 21st century, the CESM2 simulates less ocean heat loss during the fall months compared to its previous version, delaying sea ice formation and leading to ice‐free conditions for up to 8 months under the high emissions scenario. As a result, both CESM2 configurations exhibit an accelerated decline in winter and spring ice area under the high emissions scenario, a behaviormore »
-
Abstract. In recent decades, Arctic sea ice has shifted toward ayounger, thinner, seasonal ice regime. Studying and understanding this“new” Arctic will be the focus of a year-long ship campaign beginning inautumn 2019. Lagrangian tracking of sea ice floes in the Community EarthSystem Model Large Ensemble (CESM-LE) during representative “perennial”and “seasonal” time periods allows for understanding of the conditionsthat a floe could experience throughout the calendar year. These modeltracks, put into context a single year of observations, provide guidance onhow observations can optimally shape model development, and how climatemodels could be used in future campaign planning. The modeled floe tracksshow a range of possible trajectories, though a Transpolar Drift trajectoryis most likely. There is also a small but emerging possibility of high-risktracks, including possible melt of the floe before the end of a calendaryear. We find that a Lagrangian approach is essential in order to correctlycompare the seasonal cycle of sea ice conditions between point-basedobservations and a model. Because of high variability in the melt season seaice conditions, we recommend in situ sampling over a large range of ice conditionsfor a more complete understanding of how ice type and surface conditionsaffect the observed processes. We find that sea ice predictability emergesrapidlymore »