skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Arctic Sea Ice in Two Configurations of the CESM2 During the 20th and 21st Centuries
Abstract We provide an assessment of the current and future states of Arctic sea ice simulated by the Community Earth System Model version 2 (CESM2). The CESM2 is the version of the CESM contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We analyze changes in Arctic sea ice cover in two CESM2 configurations with differing atmospheric components: the CESM2(CAM6) and the CESM2(WACCM6). Over the historical period, the CESM2(CAM6) winter ice thickness distribution is biased thin, which leads to lower summer ice area compared to CESM2(WACCM6) and observations. In both CESM2 configurations, the timing of first ice‐free conditions is insensitive to the choice of CMIP6 future emissions scenario. In fact, the probability of an ice‐free Arctic summer remains low only if global warming stays below 1.5°C, which none of the CMIP6 scenarios achieve. By the end of the 21st century, the CESM2 simulates less ocean heat loss during the fall months compared to its previous version, delaying sea ice formation and leading to ice‐free conditions for up to 8 months under the high emissions scenario. As a result, both CESM2 configurations exhibit an accelerated decline in winter and spring ice area, a behavior that had not been previously seen in CESM simulations. Differences in climate sensitivity and higher levels of atmospheric CO2by 2100 in the CMIP6 high emissions scenario compared to its CMIP5 analog could explain why this winter ice loss was not previously simulated by the CESM.  more » « less
Award ID(s):
1847398 1724748
PAR ID:
10445212
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
9
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Arctic and Antarctic sea ice has undergone significant and rapid change with the changing climate. Here, we present preindustrial and historical results from the newly released Community Earth System Model Version 2 (CESM2) to assess the Arctic and Antarctic sea ice. Two configurations of the CESM2 are available that differ only in their atmospheric model top and the inclusion of comprehensive atmospheric chemistry, including prognostic aerosols. The CESM2 configuration with comprehensive atmospheric chemistry has significantly thicker Arctic sea ice year‐round and better captures decreasing trends in sea ice extent and volume over the satellite period. In the Antarctic, both CESM configurations have similar mean state ice extent and volume, but the ice extent trends are opposite to satellite observations. We find that differences in the Arctic sea ice between CESM2 configurations are the result of differences in liquid clouds. Over the Arctic, the CESM2 configuration without prognostic aerosol formation has fewer aerosols to form cloud condensation nuclei, leading to thinner liquid clouds. As a result, the sea ice receives much more shortwave radiation early in the melt season, driving a stronger ice albedo feedback and leading to additional sea ice loss and significantly thinner ice year‐round. The aerosols necessary for the Arctic liquid cloud formation are produced from different precursor emissions and transported to the Arctic. Thus, the main reason sea ice differs in the Arctic is the transport of cloud‐impacting aerosols into the region, while the Antarctic remains relatively pristine from extrapolar aerosol transport. 
    more » « less
  2. Abstract Earth system models are valuable tools for understanding how the Arctic snow‐ice system and the feedbacks therein may respond to a warming climate. In this analysis, we investigate snow on Arctic sea ice to better understand how snow conditions may change under different forcing scenarios. First, we use in situ, airborne, and satellite observations to assess the realism of the Community Earth System Model (CESM) in simulating snow on Arctic sea ice. CESM versions one and two are evaluated, with V1 being the Large Ensemble experiment (CESM1‐LE) and V2 being configured with low‐ and high‐top atmospheric components. The assessment shows CESM2 underestimates snow depth and produces overly uniform snow distributions, whereas CESM1‐LE produces a highly variable, excessively‐thick snow cover. Observations indicate that snow in CESM2 accumulates too slowly in autumn, too quickly in winter‐spring, and melts too soon and rapidly in late spring. The 1950–2050 trends in annual mean snow depths are markedly smaller in CESM2 (−0.8 cm decade−1) than in CESM1‐LE (−3.6 cm decade−1) due to CESM2 having less snow overall. A perennial, thick sea‐ice cover, cool summers, and excessive summer snowfall facilitate a thicker, longer‐lasting snow cover in CESM1‐LE. Under the SSP5‐8.5 forcing scenario, CESM2 shows that, compared to present‐day, snow on Arctic sea ice will: (1) undergo enhanced, earlier spring melt, (2) accumulate less in summer‐autumn, (3) sublimate more, and (4) facilitate marginally more snow‐ice formation. CESM2 also reveals that summers with snow‐free ice can occur ∼30–60 years before an ice‐free central Arctic, which may promote faster sea‐ice melt. 
    more » « less
  3. This dataset includes annual, gridded Arctic sea ice seasonal transition metrics (dates and periods) for fifteen Coupled Model Intercomparison Project version 6 (CMIP6) models and the Community Earth System Model version 1.1 (CESM1.1) Large Ensemble (CESM LE) (Kay, et al., 2015). Seasonal transition dates include melt onset, opening, break-up, freeze onset, freeze-up and closing. Seasonal transition periods include the melt period, the seasonal loss-of-ice period, the freeze period, the seasonal gain-of-ice period, the melt season, the open water period and the outer ice-free period. Data are provided for one ensemble member of the following models: Australian Community Climate and Earth System Simulator CM2 (ACCESS-CM2), Beijing Climate Center Climate System Model 2 MR (BCC-CSM2-MR), Beijing Climate Center Earth System Model 1 (BCC-ESM1), Community Earth System Model 2 (CESM2), Community Earth System Model 2 FV2 (CESM2-FV2), Community Earth System Model 2 Whole Atmosphere Community Climate Model (CESM2-WACCM), Community Earth System Model 2 Whole Atmosphere Community Climate Model FV2 (CESM2-WACCM-FV2), Centre National de Recherches Météorologiques ESM 2-1 (CNRM-ESM2-1), Centre National de Recherches Météorologiques CM 6-1 (CNRM-CM6-1), EC-Earth3, Meteorological Research Institute Earth System Model 2-0 (MRI-ESM2-0), Norwegian Earth System Model 2 LM (NorESM2-LM) and Norwegian Earth System Model 2 MM (NorESM2-MM). Data are provided for 40 members of the Community Earth System Model Large Ensemble (CESM LE), 35 members of Canadian Earth System Model 5 (CanESM5) and 30 members of Institut Pierre Simon Laplace CM6A LR (IPSL-CM6A-LR). The data is stored in netcdf format, and includes metadata in the netcdf files. The raw CMIP6 and CESM LE model output that these transition metrics are calculated from are publicly available at https://esgf-node.llnl.gov/projects/cmip6/ and https://www.earthsystemgrid.org/ respectively. This dataset was created to evaluate climate model projections of Arctic sea ice using seasonal transition metrics in the context of both observations and internal variability. It is used in the article Smith, Jahn, Wang (2020), Seasonal transition dates can reveal biases in Arctic sea ice simulations, The Cryosphere, in press. The discussion paper with a link to the final paper can be found at https://doi.org/10.5194/tc-2020-81. This work was conducted at the University of Colorado Boulder from 2019-2020. 
    more » « less
  4. Abstract The Arctic is undergoing a pronounced and rapid transformation in response to changing greenhouse gasses, including reduction in sea ice extent and thickness. There are also projected increases in near‐surface Arctic wind. This study addresses how the winds trends may be driven by changing surface roughness and/or stability in different Arctic regions and seasons, something that has not yet been thoroughly investigated. We analyze 50 experiments from the Community Earth System Model Version 2 (CESM2) Large Ensemble and five experiments using CESM2 with an artificially decreased sea ice roughness to match that of the open ocean. We find that with a smoother surface there are higher mean wind speeds and slower mean ice speeds in the autumn, winter, and spring. The artificially reduced surface roughness also strongly impacts the wind speed trends in autumn and winter, and we find that atmospheric stability changes are also important contributors to driving wind trends in both experiments. In contrast to the clear impacts on winds, the sea ice mean state and trends are statistically indistinguishable, suggesting that near‐surface winds are not major drivers of Arctic sea ice loss. Two major results of this work are: (a) the near‐surface wind trends are driven by changes in both surface roughness and near‐surface atmospheric stability that are themselves changing from sea ice loss, and (b) the sea ice mean state and trends are driven by the overall warming trend due to increasing greenhouse gas emissions and not significantly impacted by coupled feedbacks with the surface winds. 
    more » « less
  5. Abstract Projections of a sea ice-free Arctic have so far focused on monthly-mean ice-free conditions. We here provide the first projections of when we could see the first ice-free day in the Arctic Ocean, using daily output from multiple CMIP6 models. We find that there is a large range of the projected first ice-free day, from 3 years compared to a 2023-equivalent model state to no ice-free day before the end of the simulations in 2100, depending on the model and forcing scenario used. Using a storyline approach, we then focus on the nine simulations where the first ice-free day occurs within 3–6 years, i.e. potentially before 2030, to understand what could cause such an unlikely but high-impact transition to the first ice-free day. We find that these early ice-free days all occur during a rapid ice loss event and are associated with strong winter and spring warming. 
    more » « less