skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeRose, R_Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climatic conditions exert an important influence on wildfire activity in the western United States; however, Indigenous farming activity may have also shaped the local fire regimes for millennia. The Fish Lake Plateau is located on the Great Basin–Colorado Plateau boundary, the only region in western North America where maize farming was adopted then suddenly abandoned. Here we integrate sedimentary archives, tree rings, and archeological data to reconstruct the past 1200 years of fire, climate, and human activity. We identify a period of high fire activity during the apex of prehistoric farming between 900 and 1400 CE, and suggest that farming likely obscured the role of climate on the fire regime through the use of frequent low-severity burning. Climatic conditions again became the dominant driver of wildfire when prehistoric populations abandoned farming around 1400 CE. We conclude that Indigenous populations shaped high-elevation mixed-conifer fire regimes on the Fish Lake Plateau through land-use practices. 
    more » « less
  2. Abstract Estimates of the percentage of species “committed to extinction” by climate change range from 15% to 37%. The question is whether factors other than climate need to be included in models predicting species’ range change. We created demographic range models that include climate vs. climate‐plus‐competition, evaluating their influence on the geographic distribution ofPinus edulis, a pine endemic to the semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inventory plots support the inclusion of competition in range models. However, climate and competition together only partially explain this species’ distribution. Instead, the evidence suggests that climate affects other range‐limiting processes, including landscape‐scale, spatial processes such as disturbances and antagonistic biotic interactions. Complex effects of climate on species distributions—through indirect effects, interactions, and feedbacks—are likely to cause sudden changes in abundance and distribution that are not predictable from a climate‐only perspective. 
    more » « less